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M. E. Fourney (GALCIT), shows a photoelastic specimen
of a solid rocket grain subjected to a simulated internal
pressure when viewed in a white light polariscope.



FOREWORD

Over the last several years, the solid propellant rocket has received in-

creasing attention, based primarily upon its generally increased reliability and

state of readiness, although not to the exclusion of alternate propulsion means such

as the liquid propellont rocket. During the design of the solid rocket motor system

certain structural problems immediately arise, with two of the more common ones

being high temperature nozzle design and the fabrication of ultra-high strength
. metal cases to contain the burning motor. As an outgrowth of a meeting in 1958 of

the Physical Properties Panel, which is a technical group sponsored by the Joint

services through the Solid Propellant Information Agency at the Applied Physics

Laboratory of the Johns Hopkins University, it appeared advisable to direct in-

creased attention toward another class of problems; namely, evaluating the structural

integrity of the rocket grain or viscoelastic solid fuel itself. The physical and tech-

nical behavior of the fuel, in contrast to most solids in engineering use, is signift-

"cantly affected by relatively small changes in temperature and characteristic time

- scale under consideration. For this reason, less commonly employed structural

analysis methods must be used in order to assess quantitatively the behavior of the

grain under pressure, temperature, and environmental loadings.

During the aforementioned meeting. Dr. F. J. Lavacot expressed the hope

that it would be possible to collect certain interdisciplinary information, cutting

across the fields of chemistry, internal ballistics and structural design which would

permit the desi;n engineer to make more accurate assessments of rocket performance.

This suggestion led, among other things, to establishing a project late that year at

the Guggenheim Aeronautical Laboratory of the California Institute of Technology

(GALCIT) in support of certain work of the Thiokol Chemical Corporation, Redstone

Division. The results of various phases of this program have been subsequently

reported in six quarterly progress reports through June 1960. This final report is

not necessarily a compendiUm of these previous reports(L I - 1. 6) although it

leans heavily upon them, but is rather an attempt t4 describe t.:a,prehensively the

type of structural complications introduced by a viscoelastic material and provide

certain background irdormation to assist the analyst in evaluating the structural

integrity of a solid propellant rocket grain.
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From the engineering standpoint, the problem areas have been separated

into three catagories: (i) characterization of material properties; (ii) analysis

procedures; a&n. (iii) failure criteria. As is true with the conventional engineering

materials, these areas are intimately related, but with the underlying new feature

being the viscoelastic character of the solid fuel itself. Emphasis has been placed

primarily upon engineering application as an end aim, and for this reason many

interesting scientific excursions have been deliberately by-passed.

It is a pleasure to acknowledge the cooperation of the Thiokol Chemical

Corporation, and especially Dr. W. F. Arendale, during the course of this study.

The authors also wish to thank innumerable members of the solid rocket industry

at large and in particular the Physical Properties Panel for the many discussions

relating to the interplay of chemical and structural factors. Within GALCITO many
members of staff and graduate students have contributed to the subject matter of

* - this project, and the secretarial assistance of Mrs. Beih Berry has been invaluable

S" "in the editing and preparation of the progress and final reports. We also wish to

acknowledge our appreciation of the techn.,cal ;.;ontributions of W. G. Knauss and

L. D. Stimpsoza.
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1.INTRODUCTION

1. 1 Basic Assumptions

In preparing to analyze a solid propellant racket grain, it is necessary.:&
well as expedient to establish the assumptions under which the analysis will be

conducted. Notwithstanding certain glaring deficiencies which will be discussed

later, particularly in connection with failure theory. it is proposed to consider

the medium as isotropic, homogeneous. and continuous. The practical objections

to these assumptions are based upon the fact that the viscoelastic elastomer. which

consists of the order of 20 percent by volume, is mer::Ay a binder in which are
imnbedded various considerably harder particles. Thus basically one does not have

a homogeneous. nor perhaps an isotropic, medium. One must perforce only assumea
that there does exist, on the average macroscale, an equivalent medium of this type.

%For many analyses this approximation will be satisfactory, certainly at the present

stage. although the assumption can be seriously in error in fracture or tearing

where the origin of failure begins on the microscale. Next, the assumption of

continuity is not always fulfilled because it implies that there is always a bond

between the various solid filler elements and the elastomeric binder. Actually the

pullaway effect is well established, wherein excessive tensile stress will cause the

filler-binder adhesion to part. On the other hand the bond will still exist between

those surfaces in compression, which therefore leads to (non-continuum) load

induced isotropy. Nevertheless. in order to conduct present analyses it is custom-
ary, and at least temporarily appropriate, to assume an isotropic, homogeneous

continuum.

The second assumption is that the strains will be sufficiently small that

infinitesimal deformations can be assumed. Actually for the loads and geometries

used in present motors, strains of 30 percent are frequently computed from infini-

tesimal theory, which certainly pushesaa the limit of validity for this assumption.

On the other hand, finite strain. analysis, even without viscoelastic effects, is far
from simple. Considering the widespread knowledge of infinitesimal deformation

theory and its relative ease of application, it is-considered appropriate, pending

some later -qualifications, to begin at this point.

As a third assumption, it is appropriate to neglect inertia forces~due to

* . straining, during ordinary viscoelastic deformations. They are usually highly

damped and exponentially decaying, although in certain cases, such as possible

stress wave propagation through the grain due to burning phenomena, this particifiar

assumption might have to be reevaluated.

71.



The final assumption, which is chosen for analytical simplicity, relates to

the geometries chosen for investigation. This one is not in principle as restrictive.

depending primarily upon the time the analyst can afford to devote to analysis which

already incorporates certain simplifying assumptions. Thus one is not surprised

to find the majority of examples confined to thick-walled right circular cylinders -

or spheres. On the other hand such a napproach is not unreasonable; it follows the

engineer's usual approach of developing his intuition by a careful study of idealized

situations which then permit him to make judicious and considered extrapolation to

situations where analysis is hopeless or uneconomical.

In summary then, the assumptions currently to be considered are:

1. the viscoelastic medium is isotropic, homogeneous, and
continuous;

2. deformations are sufficiently small to be considere4
infinitesimal;

?. inertia forces, due to straining, are neglected; and

4. idealized geometries are considered for which analytical
solutions may be obtained.

1.2 Review of Elastic Analysis

As a point of departure, let us collect the appropriate relations used in

formulating the governing field equations for stress in the theory of infinitesimal -

elasticity in rectangular coordinates (17). where u (or v, w) is the small dis-

placement in the x (or y, z) direction.

Equations of stress equilibrium:

Strain-displacement relations:

6 Y Y. +

S~+
= -'--- + -0-

___1..l



Stress-strain relations:

eV. r. 3) ...+.

14 = 'CYR

AA•

The preceding equations are seen to form a set of 15 equations in IS
unknowns, where it is important to recognize that only the lant set -- those con.,

necting stress and strain--contains or are influenced by the material properties

Youngis modulus. E. and Poisson's ratio. V . These equations may be formally
simplified to give three equations in the displacements.

~~~_T +• 14 Ul ] +••' "1•-2VX =,O ,

Ta * * + Zo (1.+ . 4)
S+ + •

by solving (1. 2.3) to give the stresses in terms of strains and inserting the results

into (1. Z. 1) which become strain equations of equilibrium. Then (1. 2. 2) is

substituted to give the three displacement equations. Alternately the equations can

be formulated solely in terms of stress by inserting (1. 2. 3) into (1. 2. 2) to give

stresses in terms of displacements; by carring out various cross derivatives, the

displacements can be eliminated to give the equations of compatibility, vit

(I )VC.+ e- *~ rj+Z1

-a + 0 1 (1t+V Z") + 0(1.2.5)

-al .0

where a and 0- 0"+ O"l*Oa The choice of

.6W -

S.. . .

". .- - .. . ,. -.- - .% -. ,o ,'- '. '. . '. -' . " . ' _' ' - . - ' - ". T



%%

-4-

which system of equations to be used depends usually upon whether the boundary

conditions are given in terms of displacements or stresses. (Corresponding

equations can also be given for cylindrical coordinates. see Section 3. 3. 2).

As a matter of philosophy, the analyst must usually inquire as to whether

he is mainly interested in btress (strain) or displacement, and in order that he be

able to solve the appropriate equations, he needs only to (1) run laboratory tests

to determine the material properties E and s/ * (Z) solve the governing field

equations for determining the stress everywhere as a function of applied load--and

thus its maximum value, and (3) using an appropriate failure criterion, e.g.,

maximum stress, deduce the applied load at which this maximum stress is reached.

The purp'Jse of the following sections is to illustrate how the equivalent steps
are carried out. when the material is viscoelastic.

- r.
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2. MATERIAL CHARACTERIZATION

In order to predict the response of viscoelastic materials to applied stress&

it is necessary to know the elastic and viscous parameters of the material as a
function of time, rate, and temperature. In principle these parameters may all be

combined into a generalized stress-strain law such that the strain (stress) may be

calculated or deduced for an applied stress (strain) as a function of these parameters.

When it is justified to assume this behavior is of linear form, based upon experi-

mental evidence, one can view this association between stress and strain as a
transfer function having the property that when it is multiplied by a linear functional

of strain (stress), it generates the associated linear functional of stress (strain).

We proceed to consider first the more familiar behavior of metals.

2. I Operational Concept for Stress-Strain Relations

When a uniaxial steel tensile specimen at a moderate temperature is

stretched, it is observed that the instantaneous strain is very nearly proportional

to the applied stress up to the yield point; and that if the bar is unloaded the same

law is followed. Consequently, we say the material obeys Hooke's law in tension

up to the yield point and write

a.= .1S

in which O and 6 are based on the original specimen dimensions as in the usual o

engineering sense. The proportionality constant, E, which represents the slope

"of the stress-strain curve, is called Young's modulus or the tensile modulus*.

This law can also be written in the inverse form

The proportionality constant D is then commonly referred to as the tensile

complianco. It has been Zound experimentally -nat the above law holds for many

materials, particularly metals, as long as the strains are small.

* Poisson's ratio, iV . the ratio of transverse to longitudinal strain, is customarily
measured by resistance strain gages.

-- -
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It is evident that if a material which obeys Hooke's law is held at a constant

strain, the stress also remains unchanged with time. However. when a visco-

elastic tensile specimen at room temperature is stretched and held at a constant

strain G 0 (stress relaxation test). the stress Cr(t) necessary to maintain this
elongation decays with time. In other words, the tensile relaxation mcdulus.

E(t). ad(t)/Ie * decreases. This situation is illustrated in Figure 2. Ia&

behavior at constant stress is shown in Figure 2. lb.

In addition to strong time dependence, the mechanical properties are greatlySaffected by temperature. Below a temperature, Ts. defined as the glass transition

temperature, the propellant is glassy and behaves as a brittle betdy obeying Hooke's

law. Above this temperature, however, the response is time dependent and varys

considerably with temperature. This behavior leads one to formulate a general

functional relationship between tensile stress and strain which includes both time

"and temperature dependence for temperatures greater than T . However. it has -

been foudl for many polymers, particularly plastics and rubbers, that these two

variables can be considered separately if the temperature range is not too great.

For exam-ple, if certain material constants are known at 6ne temperature, it is

possible to predict behavior at another temperature by simply shifting the time

"scale. Since composite propellants are filled rubbers or filled plastics and double-

base propellants are plastics, it is expected that the same rule should hold. On

this basis therefore, only the time dependent behavior at a fixed temperature uill
be discussed, but will be followed in later sections by an explan:ation oi the method
used to change to a different temperature.

Expanding now the simple stress-strain relation given by (2. 1. 1) for a

simple elastic behavior to a more general time dependent behavior one can write

0o[t = On 0 (l.e3)

where 01 and 02 represent algebraic and differential operations on CF(t) and 6(t).

For exarnple, when Hooke's law (2. 1. 1) applies, the operators are the simple
constants O0 a I and O a E. it is important to note. however, that these operators

are not always linear. Indeed for large deformations of some metals. a more

realistic elastic is for example

where V is Poisson's ratio. In this instance 0 is a non-linear algebraic operator.



A iimple time dependent extension of -Hoolkels law is to consider stress

"proportional to both strain and strain rate. For this case. (Z. 1. 3) becomes

in which E and riv are proportionality constantb. An important implied property

of the differential operator is that it is linear and therefore obeys many of the

ordinary rules of algebra. such as association, commutation, and superposition.

This allows us to write

and hence identify

01=l 1z 0 , ÷ A-+F, (Z.1. 7)

If we now consider a creep test in which a constant uniaxial stress, or. .

is applied to a material following (2. 1. 5), the resulting axial strain can be

calculated simply by integration. Assuming the specimen to-be unstressed and
unstrained at time t a 0. we obtain

where it is convenient to define a rctardation time, • v, such that

the creep compliance D(t) is therefore

=-." -•- (Z. 1. l10)

A schematic plot of D(t) is shown in Figure 2. 2. It is seen that D(t), given by

equation (Z. 1. 10). is qualitatively similar to the creep compliance shown in

Figure 2. 1 for an actual propellant.

Folloving the 'general evaluation technique as applied in this example, we

see that: (a) the material was characterized by (Z. 1. 5); (b) the stress analysis

was made. in this uniaxial case GO= P/A, or load divided by initial areas and

(c) a failure criteria must next be applied. If for example, fracture occurs when a

"critical ruptitre strain CR is reached, the time to failure for an applied stress

C- is easily computed from (2. 1. 10) as

0 t



and the analysis is completed.
Unfortunately however. the stress analysis is usually not this simple. nor

is it possible to describe accurately the complete stress and displacement behavior

of propellant by such a simple relation; it is therefore necessary to go to more

complicated operators. It turns out that if the degree of complication is such that
the actual stress-strain response (Z. 1. 3) can be adequately described by more
general linear operators of the form (2. 1. 6), the mathematics involved in solving

stress problems is greatly simplified. This important fact therefore provides that

impctus for investigating possiblie representations of the mechanical behavior by

linear operators and their associated mechanical models.

2. 2 Linear Viscoelastic Representation

We now define a special generalization of (2. 1. 3) such that 01 and 02 are

1 2

taken to be linear differential operators. In the literature such a stress-strain

law is called a linear viscoelastic representation*. and for a simple tensile test

is written

+ A- [,- pz I. el GM

or more compactly

I2.[.2

where Po1 and Qde stand for the bracketed operators 01 and 0d respectively.

dopdt is a linear operator that represents the ith derivative with respect to time,

and p1 and a re experimental material constants which are obtained by methods

to be discussed subsequently.

If a time dependent stress produces an associated time dependent strain, then
if doubling the magnitude of the stress holding the mode shape of the time variation
the same also doubles the strain magnitude withofit changing the shape of its time
dependence, the material is said to be linearly viscoelastir.

i - writte. . . . . . .

- .- . . . - - t - ,,
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The relation (2. 2. 1) has been verified experimentally for small strains
over a wide temperature range for many unfilled polymers. Even though composite

propellants are essentially highly filled polymers, it is nevertheless expected that

they would exhibit more or less of a linear viscoelastic behavior depending upon the

specific composition.

Before discussing various specializations of (2. 2. I), it should be remarked

that the same form of a stress-strain law is found to hold for hydrostatic pressure

and volume change, and for shear stress and shear strain in a simple shear test.

Thus, the response of an element subjected to hydrostatic pressurization is

represented by

&V.t

where V(t)/V° is'the volume change per unit undeformed volume due to the

hydrostatic pressure Or (t). Similarly, write

S .t(t:) •QVt) {(2.2.4)

in which T(t) is a shear stress and 3r(t) the corresponding shear strain.

P, Q, P' Q are of the general form of P" and 0" shown in (2. 2. 1). but, of course.

"with different experimental material constants. Equations (2. 2.2). (2. 2. 3), and
(2. 2.4) are analogous to the elastic stress-strain laws, since for an elastic body

undergoing small dvfornmaions we can write K
s.mple uniaxial tension: o r= ; (E a Young's modulus) :
hydrostat.c pressurization: 0-=-K (K a bulk modulus) (2.2.5)

'V.

shear: t =.,4 r a; (M shear modulus) .

* " Similarly for a linear viscoelastic material we have

- • simple uniaxial tension: TO' .. C 6(10
P.

* -: hydrostatic pressurization: ((--' ", Q V (z. z. 6)

shear: Z (.t) " Y-'0
"where the association of E with Q"I/P", etc.. is obvious*.

* This operational notation. e.g. 0"!/P", is purely formal and represents an
implied form of integration. Its actual significance will be explained in the
subsequent section on mv•odels.

v . .... . . . . . .



It may be remarked that a purely mathematical approach to linear theory

does not restrict the form of the P, Q operators. However. B•ot( 2 - 1) has used

irreversible thermodynamics to show that the coefficients are restricted in such a

way that the ratios Q"/P"p Q'/P'. and Q/P must be identical with the transfer

functions for mechanical models consisting of springs and dashpots. Since the

operator ratios in (Z. 2. 6) are restricted to be of a definite form, it is often

convenient to retain this form rather than multiplying all terms out and separating

P and Q. Therefore, defining p=d/dt, we shall generally write E(p). K(p) and
A4 (p) in place of Q"/P", Q'/P', Q/P and thus maintain this analogy between the

viscoelastic and elastic problems in our notation.

When it comes to actually computing the stresses and displacements in a

linear viscoelactic body, use will be made of this analogy by working out an

associated elastic solution in terms of the associated operator form of the material
representation. For the present, however, -we shall continue with a discussion of

the material characterization.

It can be shown that when a three dimensional elastic body is isotropic and

homogeneous there can exist no more than two independent elastic constants

In their natural form. they are the bulk modulus, K, governing the stress-strain
proportionality for (hydrostatic) dilatation acting alone, and the shear modulus.

g governing distortion alone. Similarly, as a result of geometric symmetry,

only two independent operator relations can exist !or an isotropic, homogeneous,

linear viscoelastic material. Specifically we have from (2. Z. 5) and (Z. 2. 6) the

analogy

A-- ((p) (2.2.7)

K- K(P) (2. Z.8)

Engineering analysts frequently find it convenient to solve elastic problems in terms

of Young's modulus and Poisson's ratio which are related to K and, * and the

viscoelastic associations by

9A,,K<- 9A.(P)K(P) ) (2..9)
BK~p).A4(P)3 K-t-,M 3K(p)-4,M((P)

3K-2A4 3K(pp)-2,4(P)
6K+24 QGK(p)+2A4(p) (2.2.10)

The choice of the various alternate forms depend upon which operators are known
from experiments. We turn now to specific representations of viscoelastic media

and their associated operator equations.
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2.3 Model.Representation

As previously mentioned, Biot(2 " 1) has shown that the operator equxtions

(2.2.6), which define the stress-strain behavior of a linear viscoelastic material,

can be represented diagrammatically by mechanical models that exhibit the uame
macroscopic behavior(2" 3). It is important to emphasize that -these models will

give a description only of the phenomenological behavior of a material, and usually

tell nothing of the complex molecular processing causing this behavior. However.

they are useful for illustrating the physical significance of an operator equation and

are a convenient means for constructing an operator in order to approximate

observed viscoelastic behavior.

2.3. 1 Finite element models

The simplest models are those which can be constructed by arranging a few

spring and dashpot elements in different ways to generate various characteristic

responses.

Hookean model. - The simplest model representation of an elastic body has

already been mentioned. This Hookean model consisting of a spring is shown in

Figure 2. 3. If we denote the spring constant by a. modulus, m. the applied force

by stress, (Y and the extension by strain, f - we h.ve a model, following (2.Z.6)

which can be used to represent either tension, shear, or bulk behavior.

Newtonian model. - Another simple model may be used when the stress is a
function only of strain rate. as in a fluid. Here the constant of proportionality is

represented by the viscosity. )7 . of a dashpot as shown in Figure 2. 4. It is

characteristic of this model that with a constant stress the strain is unbounded with

time. i.e. unlimited flow.

Now since the response in shear. tension, and bulk is assumed to be linearly

viscoelastic, the stress, 0T, and strain, F , used with the models will, for con-

venience, be usually assumed to represent any one of these three types of loading*.

* When applying the operator expressions relating or and e to experimental data or
to the solving of a stress problem, different symbols should be used for tension.
bulk and shear. We shall use the symbols proposed by the Committee on Nomenl
clature of the Society of Rheology (H. Leaderman, Trans. Soc. Rheology. L, 213.
1957) in this report (with the exception of the shear modulus), which is given in the
"following table:

Type of
Deformation Modulus( 01,/a) Compliance (a 61g)-/

- unspecified m k

simple tension E D
bulk KBI
shear I. 3
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However, there is an exception which must be noted for certain models, depending

upon the loading condition. Specifically, when a & aple shear stress is applied to

an uncross-linked polymer element, its deformation x.:creases lW.efinltely. However

if this same polymer is subjected to a hydrostatic preusure the volume cannot

decrease in an unlimited manner, but must approach an equilibrium value. Conses

quently, a model that evinces unlimited flow behavior cannot be used to define an

operator equation relating hydrostatic pressure (stress) and relative volume change

(strain). In contrast, a cross-linked polymer specimen subjected to a shear stress

will always reach an equilibrium deformation. We therefore have the rule that in

describing tenlsion, bulk, and shear response for a cross-linked polymer, or bulk

-response for an uncross-linked polymer, a model should be use.d that does not

exhibit unlimited flow under stress.

Voigt model. - Turning now to the first of the combined element models,

consider a spring and a dashpot arranged in parallel as shown in Figure 2. S. In
order to derive the appropriate operator equation for the model, write an equation

of stress equilibrium in which the applied stress is balanced by the internal stresses

on the elements, as shown in Figure 2. %a. and then relate the overall strain (or

extension) e of the element to the internal strains. For the Voigt model, this

step is trivial since the overall strain is the same as in the dashpot and spring.

It is seen that equation (Z. 1. 5), discussed previously, is represented by this modeL.

The behavior in standard tests is shown in Figures 2. 5b and Z. Sc. !n a
creep test, the equation for strain is found by integrating the operator equation in

which the applied stress is constant. The initial condition needed to determine the

constant of integration is E a 0 when t a 0. It should be noted that there is no

instantaneous strain, whereas an actual propellant does deform immediately

(neglecting inertia effects). The recovery equation of strain is obtained by inte-

grating the operator equation with the stress set equal to zero, and the initial

condition C a E *, when t a t,. The curve shows that the model completely recovers

to its original length as t - co.

The reason for defining previously the ratio ?fvlmv as retardation time

T.. as in (2. 1. 9). is seen by the creep behavior. Here, T v represents a quantity
with the dimensions of time and has the effect of shifting the time scale in regards

to the delayed action of the material. More specifically, it is the time needed for

the instantaneous unattained compliance (De -D) to be reduced to (lie) of the total

unattained compliance D. . For example, when rv is large, the strain is retarded

so that it increases slowly; whereas if T is small, the curve shifts to the left and

the equilibrium strain is approached quite rapidly with very little retardation.

4-.

. . . . . .
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When this model is held at a constant strain, as in-a stress relaxation test.

the stress remains constant since no flow ,jccurs in the dashpot. Thus, the Voigt

model does not exhibit stress relaxation, while a propellant does. With a constant

strain rate, Figure Z. 5c, the stress immediately jumps to a finite value and then

increases linearly. This behavior also is not representative of a propellant since

the stresi. in a real material increases continuously from zero at a decreasing rate.

Maxwell model. - The other possible two element arrangement consists of

arranging the spring and dashpot in series. The operator equation is ol.tained by

noting that the stress in the dashpot is the same as that in the spring, and equating

the overall strain to the strain in the dashpot plus that in the spring. The behavior r

is summarized in Figure 2. 6.

The integrated expression for strain in a creep test (Figure 2. 6b) shows

that deformation occurs immediately, and that unlimited flow occurs, i.e. the strain

does not approach an upper limit. If the stress is removed, there is an immediate

recovery to a finite strain which remains as a permanent deformation.

This model shows stress relaxation behavior in a manner similar to uncross-

linked polymers, in that the stress decays to zero at a decreasing rate. For this

model, the time constant is defined as m • /m/ in which " is called the
relaxation time. T. has the dimensions of time and represents the time for, the

stress to fall to (i/e) of its original value in a relaxation test. It is, therefore, a

measure of the rate at which the relaxation occurs; for example, if the relaxation.

time, tIms is small. the stress decays to zero almost immediately. If the model

is strained at a constant rate, the stress-time curve in Figure 2. 6d shows a

response qualitatively similar to that of a propellant (Figure 2. 1).

Three element model (Maxwell element plus spring). - As the Voigt or

Maxwell models bv themselves usually possess ir.sufficient generality to represent

propellant behavior, it is necessary to form combinations of these basic units in

order to approximate actual linear viscoelastic response. This is usually- done by

adding Voigt models in a series or Maxwell models in parallel to form an array of

* The operational notation that is sh-.own has a two-fold significance. First, t•e
expression

C ' _ X' (a)

t



with pa d/dt. can be interpreted as an implied form of integration by the method
of partial fractions. The integral is found by recognizing that 0r is the solution
to the first order differential equation

dt +r(b

in which " and mm are constant if the matcriall s temperature is constantg
however, wZen the temperature is transient these parameters will generally be
functions of time because of their temperature dependence. In the gernw I case of
time dependent parameters Tm(t), mm(t), integration of (b) yields

In~ e ?.(AdG-&v dv + C1 a, iv I V+ I

where C1 is a constant to be determined from initial conditions (C1 a 0 for
initially zc.-o). With constant coefficients. (c) simplifies to

dv (d•

A second interpretation of notation (a) is associated with the ,aplace trans-
form method, which can be conveniently used when the material constants are
independent of time. The Laplace" transform of a function y(tj is defined as

T(P)= Y•e-ty')jt. e

where the symbol p now represents the complex transform parameter (whose real
part must be positive for convergence rf the integral (e)). Operating on the dif-
ferential equation (b) with this transform yields

e',•ro +r M. A-i at= P-6+ •

S d-t -' d

in which we have integrated dO'/dt and de /dt by parts and assumed, for simplicity,
that V and e are initially zero. Thus, it is seen that a second interpretation of (a)is that it is the transfer function relating transformed stress ' and strain 1 if

properties av- -- nstant and the stress and strain are initially zero; namely, with
p s t.. :-aplace transform parameter,

(9)

It stress (or strain) is given as a function of time. then the time dependent stress
(or strain) can usually be found with standard transform tables which associate
functions of p with time dependent functions, and thereby eliminate the need for
formal integration. When the operator equation consists of a sum of pa.oial
fractions, as it does if additional elerrents are added to the model, then each term
can be interpreted by means of (c) or (g).

-. V IN, P44~4 ** P-ý' 4 .- V
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springs and dashpots. The mathematical relations developed for these models

will serve as a useful guide in designing experiments for the testing of propellants.

* The first of these, shown in Figure Z. 7, consists of a spring in parallel with a

Maxwell element.

It will be recalled that the Maxwell model behaves qualitatively l0t.e an

uncross-linlked polymer in that unlimited flow (or strain) occurs under a continu-

ously applied stress. In order to describe the behavior of a cross-linked polymer*

a spring is attached in parallel as shown in Figure 2. 7a. The modulus of a spring
in parallel with one or more Maxwell elements is denoted by me, the equilibrium

modulus. Its physical significance can be seen in Figure 2. 7c, since it represents

the long-time modulus of the model under corstant strain. In addition, this spring

provides complete recovery as shown in Figure 2.7b. Another significant parameter

is the glass modulus mg. It is the effective elastic modulus for very Short loading

times and also corresponds to the effective modulus at temperatures below the

glass transition temperature.

Response to the various types of loading shown in Figure 2. 7b, 2. 7c, and

2. 7d in readily obtained, as before, by integration of the operator equation ( or by

the Laplace transform method) for creep, stress relaxation and constant strain

rate cOnditions.

Five element model - two Maxwell elements plus spring. - The last finite

element model to be discussed explicitly permits one to fit experimental data over

a wider time range than that covered by a three element model. The effect of this

additional flexibility is illustrated in Figure 2. 8. In this case, while a second *

order differential equation relates stress and strain*5 , the response for creep,

relaxation,, and constant strain rate is seen to be very similar to that of the three

element model.

The intermediate case of a four element model, which is used for uncross-

linked polymers, was not discussed since it can be readily obtained from the five

"element model by setting me a 0. In addition, composite propellants are usually

crosslinked so that the more common condition requires passing directly to five

elements.

v Previously, the series arrangement of a sprir: nd dashpot was referred to as

a Maxwell model, however when it comprises only part of a more general models
it will be called a Maxwell element.

I* Jt is important to realize that this does not i'eflect inertia effects since the roots
"-~ " of the operator equation are always real, which results from having used a model

that includes only springs and dashpots.

-,A. ........ .-. .



"In concluding this section on finite element model representations, it is

expected that the foregoing models will provide a reasonable flexibility to approxi-

mate propellant response over a limited time interval to the desired accuracy of a
one to five parameter curve fit of experimental data as represented by the spring
and dashpot materi-.l constants.

Z. 3.2 Infinite element models

While the finite element models permit reasonable representation of experi-

mental data over a limited time range, to the extent of the number of unknown

material constants or parameters -available. it may happen that the time range of

interest is too broad to be represented by a model with just a few elements. Hence

to hold the desired accuracy, but simultaneously to extend the time interval of data

representation, the only recourse is to add additional elements which, as a practical
matter, is frequently impractical for stress analysis*. However, it is useful to

consider the limit situation of an infinite number of elements which will yield

(mathematically) perfect accuracy over the entire time spectrum.

Wiechert or generalized Maxwell model. - The first of two infinite combi-
nations, which will be shown later to possess certain reciprocity featt-res, consists
of an infinite number of Maxwell elements in parallel with a spring which is used to

represent a cross-linked polymer possessing an equilibrium modulus. Character-
istically this type of model is used when the strain is imposed as an input by the

experimental set-up, and the stress output is measured. The behavior is illustrated
in Figure Z. 9 where the operator equation has been developed from a (large) finite

number of Maxwell elements which has subsequently been increasved to infinity thus
converting a finite summation to an integral representation. The limit is taken

such that the stress remains finite, as indicated in the figure.

Instead of having a finite number of discrete parameters, we now have
introduced an arbitrary function, H(T), usually called the relaxation spectrum.

If H(r:) and me are known, the stress-strain law is completely defined for all
7 types of loading. The techniques used to determine H(-t) from experimental data

will be discussed subsequently, but they amount essentially to':(a) imposing a known

strain. F(t), e.g. C0; (b) measu.ring the stress, Or(t) response experimentally and

fitting the data with an analytical curve; (c) substituting into the stress-strain
relation (see Figure 2. 9) for a(t) and 6 (t); and (d) solving this integral equation

analytically or %sumerically for H(T).

lVariof. vroposals hart kren advanced to use electrical analog techniques (e. g.

Blizard "and Gross with only limited success.
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.Integration of the general operator equation for the constant strain case

may still be carried out through the usual procedure for partial fractions or

application of the Laplace transform, even thougl. .here is not a finite sum of

terms. With this latter method, the solution for zero initial conditions is

obtained immediately, which gives the relaxation modulus in terms of the relax-

ation spectrum*. This modulus evaluated at t a 0 is defined as the glass modulus.

S. in accordance with the previous definition when finite element models were

considered. The equilibrium modulus me takes on the same significance as before.

For constant strain rate, stress can also be easily determined by means of

the Laplace transform. The result is seen'to be similar to the relaxation modulus.

In fact a very interesting relation is shown to exis, namely that the slope of the

stress-strain curve is a constant strain rite test. 4(t) a R is equal to the stress

relaxation modulus evaluated at ( L/R). This relation is independent of the relax-

ation spectrum and thus depends only on the assumption of linear springs and dash-

pots. Indeed. this same correspondence exists for the models with a finite number

of'elements. Such a relation is very useful since data from these two types of tests

can be used to check the Lssumption of .'nearity.

* This will be shown to illustrate an application of the transform method to the
integral representaticn. In accordance with the previous footnote, the transformed
equation (equation (i), Figure 2. 9) is

in which p is the transformation variable and all conditions are taken as zero for
t < 0. Even though this is the transform of an integral expression rather than a
finite sum of terms; the sta,idard procedure can be used; the only additional

-. . restriction is that the integral converge uniformly. For constant strain input&
Co. its transform is E(p) = %o/p and the transformed equation becomes

The inverse transform is found using the relation

H Ct) ct r) wtevc.
e I z j(c)

"which yields the time dependent relaxation modulus(M t- --t
(see also Figure 2.9)

Experimental data is obtained for the relaxation modulus. o'(t)/ F.& and the
equlibrium modulus is estimated at long times from the same data. Thus. in
principle everything is known except H((T). for which the integral equation is
solved analytically or numerically.
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Kelvin or generalized Voigt model. - The other infinite element model can
, be generated as shown in Figure 2. 10 by arranging a large number of Voigt elements

and a spring in series. In fact, it turns out that the linear viscoelastic behavior
generated by the Wiechert model can also be defined equivalently by the Kelvin

- models. Therefore, in principle, only one method of representation is actually

needed to solve stress problems, although both are sometimes used for experi..
*. mental reasons and cross-checking of data.* Also, the Kelvin model is customarily

used wheul the input function for the experiment is stress and the measured output

"is strain.

For example, reference to Figure 2. 10 shows that when stress is given, as
21. in a strain retardation or creep test, the strain is a relatively simple function of

the model parameters if the Kelvin model is used. Conversely a Wiechert repro-
sentation is natural and simpler for a stress relaxation experiment.

Because of the close correspondence between the Wiechert and Kelvin models,
the latter will not be discussed in detail. However, some simple correspondence*
are evident. -It is seen for example that spring constants are written in terms of
compliances, ki. rather than their reciprocals, mi; similarly, the dashpots are
defined by fluidity, • i" instead of :'ie reciprocal 17 1. This choice of nomenclature
exemplifies the similarity in the corresponding mathematical representations of the
two models. Thus one may see that INk n mg and I/me a ke. Many other more
involved expressions relating the infinite element models can be found in the litera-
ture on linear viscoelasticity 2 " 5). They are.particuiarly useful in checking the

- The eouivalenre e! the e-'---. w • -r. and .c.. %ee4a. . uwi When they !ave
either a finite or infinite number of elements. However. there are a couple of
conditions which must be satisfied in order to do thas. One is that the finite and
infinite element molels must both have the same basic behavior in regards to limited
or unlimited strain. In particular, if me A 0 in the Wiechert .model, then the equiva-
lent Kelvin model must have a spring adjacent to all the dashpots. Similarly, if the
Wiechert model represents uncross-linked material (me 2 0). then the equivalent
Kelvin model must have a free dashpot in series with the spring kg. The other
condition is that the number of elements in each model must be the same.

To prove that the finite element models are equivalent, it is necessary and suffi-
cient to show. as uill be carried out later, that the operator equation for each can
be written in identical form. That is, the same derivatives must appear in both
numerators and in both denominators. The coefficients of the derivative terms
dn/dtn will, of course, consist.of different parameters. However, by equating the
coefficients of the same derivative terms in each model, relations between the
parameters of the models are obtained. With an integral representation. the corre-
spondence between model parameters is obtained in the form of integral equations
(see equations 2. 4. 15 and 2. 4. 16).

! 0.
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theory by comparing data from various types of tests. It is important to note,

however, that such simple relations between the short and long time limit moduU

generally do not hold between the time dependent quantities of the models. For

examples it is not generally true-that the relaxation modulus is the reciprocal of

the creep compliance.

Ladder model. - There is another particularly useful arrangement of spring

and dashpot elements which does not exactly fall into the previous categories. For

years, rheologists Save been compounding elements into arrays analogous to

electric circuits, with little thought to the implications of polymer molecule kine-

matics. Because of the intrinsic awkwardness of these models, it has been neces-

sary to achieve adequate material representation through the use of broad distribution

functions or at best four or more element networks.

In 1948. Blizard(Z" 4) proposed what has come to be known as a realistic

network representation of an array of polymer molecules. He suggested that, since

a segment of a polymer molecule is actually imbedded in a medium of average

viscosity, the viscous forces or dashpots be distributed uniformly along the chain,

i-epresented by a long elastic spring. Furthermore, he assumed that all segments

are equally elastic and contribute equally to sharing the stress reaction (affine

behavior). Thus he was able to arrive at a model based on only three parameters

which provides an excellent representation of material behavior; this is *cnown as

t•e ladder model (see insert).

lg x. is the coordinate of the tail of
"W_7;_ the ith stretched element.

•%x • |o.. is the length of an unstretched.•element

'" a=•Im is the retardation time of the
viscous stres-es

X, is the unstr etched length of the
ya £ glassy segment

mg is the modulus of the glassy
segment

- 7-* '
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The following kinematic relations stem from the topology of the networkt

+ 'C IR

r x g Z. 3)

These equations may be solved by the usual methods applicable to difference

equations to yield the transfer function of the network, which is the ratio of the

Laplace transforms of the stress output to the strain input,

In arriving at this solution. it is assumed that n -r * * and n-to --w L
for large -. Finplly, m, L, and m are eliminated by the introduction of me and

9
a the overall rubbery and glassy moduli of the network. Note that mg 4 in 0 ,

because the sirainof the network is referred to (n 1o + )1 .,whereas the strain of

the glassy element is referred to 1 .
The importance of (Z. 3. 4) lies in the fact that this simple function, based

on only one parameter besides the usual limiting moduli, i.e. 'o, provides an

excellesit rcpreeentat.on of actuaL dia~t in many cases. On the other hand, the
presence of an essential singularity in the denominator makes all analytic inversions

intractable. The associated creep and relaxation functions are being calculated -

numerically at the National Bureau of Standards.

3. 3. 3 The dynamic behavior of models.

In the previous sections, the operation equations and the operational moduli

and compliances were presented for various models which implicitly related stress

to strain. In addition. time de pendent solutions were given for certain simple

loading conditions such as the variation of strain with time when a constant load was

applied, or variation of stress under constant applied strain. The former, for

example, was called a creep test. and the ratio of strain E (t) to stress (•o was

defined as the creep compliance, k(t).
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Now in addition to the use of this kind of loading, there is another con-

venient method of determining model parameters by using complex (or !.v.amic)

moduli and compliances that relate sinusoidal time-dependent stress and strain.

They are obtained by formally substituting ijr (W a frequency, I a 4-4) for the

time derivative symbol p a dldt in the operator equations given in Figures 2. 5 to

2. 10 and separating the real and imaginary parts. The symbols will be similar to

those used previously in the general presentation, except that complex quantities

will-be starred such that rm9 will denote complex modulus, and k* complex corn-
pliance. When these are used for a particular propellant, it will be necessary, of

i- " course, to indicate whether they represent simple tension. bulk. or shear behavior.

For example, the complex shear compliance is denoted by T*(W}), knd the complex

shear modulus by .4 *(M).

For simplicity, complex notation is used, e.g. sinusoidal stress is written

as ei e and sinusoidal strain as roei * If stress is given, 0 is considered

to be a-real constant representing the maximum amplitude of the sine wav.e, and

6C_ is a complex function of frcquency, W . For ao a 1, e *0 is identically

the dynamic compliance k*. Similarly. with strain given. e is real and 0.o

Is a complex function of frequency which is identical with the dynamic or complex

modulus when 1 1. As another matter of notation, it is convenient to represent

the modulus by its real and imaginary components ml(i)) and m"(w); thus

and the compliance by its real and imaginary components k'(ur) and -k"(U-):

CFO =6.) (2.3.6)

Because of v- cosity, there is a phase angle between stress and strain which It

"-tw, - a '()

AI A
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The strain lags behind the stress so that m'(cw). mi"(w), kl(ut). k"((4) are aU
positive functions of frequency. These complex quantities may also be written

in the form

*Wl'(o0u ,I1?1WI •. ((2.3.8)
- I " d e-

where
lhi'l - '(lu'f-I(,1n"+P (2. 3.9) -

I4"I,' " (2. 3. 10)

Since

-e•- = -- or -(()°•). 2.3.11l,

it follows that

I•'ll•"l =i(Z. 3. 12) .i

which is useful in converting data from compliances to moduli or visa versa.

In order to illustrate the procedure for determining the complex moduli and
compliances from operational eYpressions. consider as an exa-mple the Voigt model.

From Figure 2. 5a, the operator equation gives

=M,, ('tV,+ 1) (Z. 3.13,

Letting p a itw gives the complex modulus -

"""'.o="-My,,+ 1W'M~V•, (Z. 3.14)

from which the real (ml) and imaginary (in') components are

IU, m(Z. 3. 15)

"(Z. 3. 16)

This representation thus produces a real part of the modulus which is constant,

and the imaginary part which is linear in frequency.



- .. - .7I .,

- - I-, ."

117

-24-

The cperational compliance is the reciprocal of the, modulus, namely

4 (1p)X 12. 3.17)'"1n(.•) "ln,("rJ:,,÷) " rp.'

Again, letting p a ih k

~ (2.3.18)

one finds

V=-- "', 1 . .: 1(2.•. 19) 7

W (2.3.20)

where we have defined k a irav.

Complex moduli and compliances for several models have been computed

and are given in Figures 2. 11 - 2. 15. It was mentioned previously that when model

response is to be related to test data. it is most convenient to use models consisting

of Voigt elements in series if stress is given; while if strain is given, models

consisting of Maxwell elements in parallel should be used. Similarly. it is desirable

to represent the dynamic behavior of Voigt type models by complex compliances

and dynamic behavior of Maxwell type models by complex moduli. Except in the

case of the basic two-elemea. models, this rule is followed in presenting the dynamic'

moduli and compliances.

3.4 Spectral Distribution Functions

We have seen that there are several ways of characterizing a viscoelastic

material. It may be represented by various forms of finite models, or by a

spectral distribution cf the relaxation times associated with a Wiechert, Kelvin or

ladder model. The distribution function may be thought of as an unknown transfer

"function by which the stress and strain are related. If a known stress (strain) is

imposed and the strain (stress) response is megsured, then the third unknown

element--the transfer function connecting them--can be deduced.

Since the choice of r.. del used to represent a given mechanical behavior is

arbitrary, it follows that the various models must be related, both topologically

and analytically. The topology of network mo*'els is an as yet unexplored area.

which will be continually pursued as an important development phase of linear

_%I
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viscoelasticity. The analytic nature of network model representation by distribution

functions permits a mathematical investigation of the character of the interrelation.

One of the most direct ways of determining the spectral distribution functions

is to apply a constant strain input, E 0 . measure the uniaxial stress response. 0V(t)

(and hence the relaxation modulus E(t) a ET(t)/eo), and solve analytically or

numerically for the resulting transfer function, or explicitly, the integral equation

for H(T t in the Wiechert model. In particular, from Figure 2. 9, we have

o(:• •o• "-C :, " z 4. 11

which for the case of constant str-in, CEc. gives

":="r~l= = 0. -e-' W,.r) P-Vt•d (2.4.2)

"with the normalizing condition (Figure 2. 9)

•g _ =~ I 'L,,-e • .,t •,n ,,C ( .4

An alternate approach for determining the distribution function is to apply

a constant stress, To, measure the uniaxial strain response e(t) (and hence the

creep compliance D(t) u E(t)/ Oro), and solve analytically or numerically for the

resulting transfer function, or explicitly, the integral equation for L (") in the

Kelvin model. In particular, from Figure 2. 10, we have
T + (" .. )dT " :r to D , ( 2 ..4" "..-

which for the case of constant stress, o,. gives

-r= = Dg+ SeL(T)(iCt)dT (2.4.5)

with the normalizing condition (Figure 2. 10)

De-D = •T~t .(T dC(2. 4.6)

Inasmuch as either of these analytical representations of the distribution

functions apply to the same material, it follows that one may convert the analytical

representation of one transfer function, say •(p/ (p). into the other, •(p)/ (p)•

which must be the reciprocal. The subsequent section discusses these relations

~~.7
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2.4. 1 Model interrelationships.

The relation of the distribution functions H( 't) and L(- ) is easily established

in principle by using relationships between the Laplace transforms. Specifically,
the transforms of (2. 4. 1) and (2. 4. 4) are, respectively

CAP)= ý-P+A *- -: i; ( , (2. 4.7z)
""_(1 M, 0 (C6-"- 1DS) (2.4.7)

1P"

tt

where the change of variable T a 1/.At has been employed along with the definitions

H4t N(4J'W (~.e a) 14(A')(..)

(2.4.10) -

- x-.which requires in the normalizing functions (2. 4. 3) and (Z. 4. 6) that

ý4U W)(2.4.11) *

Multiplying (2. 4.7 ) and (2. 4.8) together gives the relation

F-. P4 4,,ID ;(.41) +

which, using (2. 4. 11). is equivalent to the more symmetrical form

H''" d,.,j[Dg* (Dj- DC) L!A dAu>1 (2.4.13)
0!

Note that from a limit check at large and small p, respectively, one deduces

ED. 1 'A Eg DC - (2. 4.13a)

so that it is obvious that if either H() ) or L(t ) is known, the other can be calculated*.

SBy way of detail in carrying out the preceding calculation, note that if we have
two Laplace transforms defined by the relations

""pi.-

OS

(P).
(S C (b[

I,



then 2?
- m-

-• (e)

The iterated Laplace transform (c) is known as a StieltJe transform. and has rather
simple invercion properties. If (a) exists and converges, then h(s) is analytic in
the entire s-plane except the negative real axis, where it has a branch point at the
origin. Use may be made of this cut in the principal Riemann sheet to invert (c).
First note that

= L (t- t•-rt .+

-gn••= •'• do•• e

S. +miarl

The int.egral in (fi) and (e) is the principal value. The difference between eqiaatlons(d) and (e) is known as the jump, given by

Thus, the inversion of (c) is accomplished siniply by calcalating the jump of the
function h(s)/2vi. Hence using the definitions (3. 4. 14), (-3. 4. 17), and (3. 4. 18).'in (3.4. 13), one may deduce that

SLCp) - (•-'•) S.(ý) (g)

which, using (f), yields (2. 4. 15) or (Z. 4:16).

I-



After using (2. 4.13a) and dcfining

-M DO (2.4.14)

it is found that

and also -4

[S t• ei;- (Ma• ." (-2?"[••"o. 4.16)c

where it is frequently convenient to have defined the integrals

St (v--A (2.4.18)
14%4")

We are now concerned with the problem of upecifying the various useful

types of stress inputs and strain inputs aid defining the relations among them.

The subsequent table lists the most important inputs.

F Strain input Associated stress behavior Transform

generalized relaxation

E . relaxation
F, e;'t dynamic response to V_,

sinusoidal strain input

imaginary part of dynamic
e~srnwt response o

cat tensile stress (at constant Ri"rate of strain)

Stress input ! Associated strain behavior Transform

C'(t) generalized creep

C. creep A-

cT.e&Idt dynamic response to
sinusoidal stress input

iinwt imaginary part of dynamic iCW/(p'..-+)
response

7-?



Among these sets the most easily procured data is creep, and the most precise Js

dyna-nic response to sinusoidal stress input. It is important to establish relatione

which enable one to convert one set of data to the other for the purpose of rapidly

predicting physical behavior.

The relation between relaxation at constant strain and tensile stress at

constant rate of strain. - It may be noted incidentally that there is no

parallel with retardation, since equipment for testing at constant rate of stress rise

is not ordinarily applied to polymeric materials. The ratio of the transforms a'

the strain inputs is given by

E -(Z. 4.19)

where the constant strain rate is designated as R. Since. the transfer function is

independent of the strain input, the ratio of the linear functionals of the stress

outputs is equal to the ratio of the same quantities for the strain inputs. Equation -

(2. 4. 19) may be recast as
-(2.4.2o)

and remembering that the stress at zero time is taken to be zero, the inversion

yields

= R de

Equation (2. 4. 21) shows that the relaxation modulus at t a E/R is the slope of the

tensile stress curve at 6 . Conversely, relaxation data can be integrated, in the

framework of linear viscoelastic theory, to generate tensile stress data•.

The relation between relaxation at constant strain and creep at constant -

stress. - From (Z. 4. 8) and (Z. 4.17•). it follows that

Likewise from (2. 4. 7) and (2. 4. 18)

W.tI.e• (- - Z . 4 .2 3 ) .

, Multiplication of tlheie latter two equations, using footnote equation (g) and (2. 4. 14)

yields

Arr ra.-a (2. 4.24)
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which may be recast as

O r -- -

No general inversion can be given for 7rjp); but if 7- 8 1(p) is representable by a

simple analytical function, then the inversion can often be effected analytically.

If. as is often the case, the analytical representation of 2 rel is quite complex# then

the following numerical formula(2 " 6) may be used for inversien. Let

I6) ~eOa (2.4.26)

then,

n. *() jj ? 1 2.4.27)

6) t
Also useful, for inversion of the Stieltje transform(" is the following: Let

S(2.4.28)S+%

then

S.. .s -z•.(2.4.29)

S,inusoidal and constant inputs. - Consider now the relation between responses

to sinusoidal strain input. Similar relations may also be developed relating sinu-

soidal and constant stress input. The constant strain input results in an output

defined by (2.4. 23). and may be inverted to

_-,- Er~Esl~,As5- (2.4.30a)

= E.~-E)~~ e~~d(w~..4) (2. 4. 30b)

The imaginary part of the sinusoidal input results in

- U,-~- ~E.+ S.(p)j (2.4.31)

M s;,= Eg sin'wt -I i=- w~k)ý4(0t) WI + .swutwOAIL (2.4. 32)

As t -*co, the measured sinusoidal stress becomes steady. This actually occurs in

a eriy short time, and is represented by
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9f

*~~Y 4tL awA'+~

+ IIE.-Eg "7 HU()W d( )CaWt:"~~~~Z (--2- ose I. 4. 33)

SS'in wt -4- 'ceS Wt

Similarly, the real part results It
434

(Z. 4. 34

r= #?4~)~ Co-i 'i t(..5

Referring to the sinusoidal strain input cited in the table above, we have

•,ee e e.coswt+ te.sln•:t (2.4.36)

to that

a.0""*= •(2.4.38)

Similarly, "t can be easily shown that'

-" = D'- D" (2.4.4-39)

"from which it fofl1ws that

'= i.= (•'4-+F-")•,D- L.D') = (2. L (E'- E'D') (2.4.40)

or

I = E--'D'+ M`01 (Z. 4. 41a)

MV) = ._'D• (2. 4.41b)

Thus. the transfer function for dynamic strain and stress inputs are reciprocal.

,_ _ _ _ _ _ _ _ _ _-

-;. '.
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Before completing the relations between static and dynamic modu14! it is

K convenient to note that the inverse Fourier-sine transform of a unit step function

is a pure sine wave (..2

This suggests that the Fourier transform of relaxation data must generate dynamic

dasa, and we have (as is verified by direct substitutiony.

W' V!~,jt)-r=jSinWtat (Z. 4. 43)

,ý,= M~W-etO5tdt(2.4.44)

(2.4.45)

j~ (2.4.46)

Inversion of these transforms results in

M-* +¶ ~ Cos Wt Ua (Z. 4. 48)

from which~ it follows that V' and Ell must be related. The reciprocal relations

between them arc known as the Kronig-Kramers integrals (Z )(principal values
indicated by cuts in integral signs):

W 'K Gj-,(2. 4. A9)

E ~ A~gUt~ ~(2.4.50)

In summary. equation (2. 4. 40) relates outputs produced by sinusoidal strain

input an sinusoidal stress input. Equations (Z. 4. 4Z) - (Z. 4. 48) relate the real

and imaginary parts of the dynamic moduluas to the relaxation modulus and equations

(2. 4. 49) and (2. 4. 50) relate the real and imaginary parts of the dynamic mod-uluss

one to another. Similar relations hold for compliance*.

------------------------

- "
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2.4.2 Power law distribution function.

Before examining viscoelastic test data in detail, it is appropriate to
inquire into the general character of creep and relaxation data. The first obser-
vation is that most materials behave such that if the relaxation modulus is plotted
against time on log-log paper, a nearly straight line results. Furthermore. if the
compliance data is plotted in a similar way. again a straight line arises--of approxi-
mately the same slope but reversed sign. Then if unit time is located at the
inflection point, creep behaves as relaxation at reciprocal time. and of course.
visa versa. Such observations lead to the selection of a trial distribution function
which, when inserted into the integral expressions (2.4. 2) or (2. 4.4). will integrate
out to give essentially a log-log straight line in the physical time plane.

The first function chosen is a simple power law (.mc " t- )

M4 C-) -, C: -r-" u sa CA(2.4.51)

and we wish to compute its associated relaxation modulus from (2.4.2) allowing for
the normalization (2.4. 3) which fixes the constant, C, i.e.

so that*

C =t IA- (2.4.S3)

and thus, incorporating (2. 4. 9).

4h

0~4A (Z. 4. 64)
-."/i o n ---} ; > ,4 _.'u , I4.i

O In order to normalize (2. 4. 5Z). it is necessary to assume an upper limit forA ,.
say A! , equivalent to a lower limit, say -C , for -r . In practice, this lower
limit iiso small'that neglecting T< T has MILtle observable effect upon measured
data. This is why this approximation is frequently called the cutoff power law
distribution.
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With the constant determined, we calculate the relaxation modulus in a
tensile specimen (Figure Z. 16) as

Uig) -E1.

* .'.(n .t (2.4.SS)

which as soon as A4 t a t/"m, 3, r(n. A(mt)- fl(n), a constant, the log-log

"straight line slope desired is therefore actually obtained over most of the time "

ange# 1. ie.

., ) 1. 1 o.(,+W-) - n 101 (At+t) (2.4.56)

"The straight line portion usually begins after a few microseconds or so, and hence
to use this approx'mate distribution function:

I. nlot the experimental relaxation modulus, CO(t)I Go versus
time on log-log paper and determine the slope of the straight
"line portion of the curve, this calculation fixes n.

2. Rea-I off this curve the best values of the long and short time
modudi. Ee and E

3. Pick an experimental point, Er(ti), near the center of the,
straight line part of the curve at a particular time, t•. -"
Knowing the two moduli (E and E ) and n, calculate .m"
from (Z. 4. 56) at the time, etr . .M

4. The distribution function is now determined.
Following the discussion in connection with the Wiechert model, and

Figure 2. 9. the stress during a constant strain rate test ( C =Rt) may be easily

"computed by integrating (Z. 4. 55) with respect to time and evaluating the result at

t8 CelR, i.e., d" /dE a dOa /d(Rt) =Erel(t) nd

where the connection with the relaxation modulus may be noted, namely

Orte+(= e + (Z. 4.58)

.. .



S~~In order to calculate the creep compliance from the relaxation modulus, ft "

L. .... . -. is necessary to proceed via the Laplace transforms: " •"

A.- • . - . ,- - -.. 4.59)

where, using (Z. 4. 24), we have

A-. -24.0

VV
I.,

In order to efect the inversion, it i necessary at this point to assume

"i Et 4c Erel - this approximation,. •alongsi ywith the previous one of assuming M M /p•| ,'

i-•i" limits the application of the resulting formula to the transition region. sufficiently.•Siremove,.s from the rubbery and glassy limits to make the approximations valid.

With this restriction then, it follows that ( •

ti M 'r m (2.4.61)-

":" •-*l" S~n n•"(Z. 4. 6Z)::

ii ,This leads to another simple relation, observed between creep and relaxation; :
n as.•inn ew

"The complex modulus and compliance are easily obtained (see 2. 4.m46)

With ths restictionthen, t folws th,

(2. 4.6 S)

• ..

c i.r e ( . 3

The complx modulusand compianc areaslobiedse2..46
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It remains to connect the distributions H'(.) and L'(A ). Since the exactrelations Involving the cutoff functions are mathematically quite Involved, one cangain some insight to the relation by using (2. 4. 30b) with Ee<G £ and (2.4.56):

(Z.; 4 . -3b)wth,, E1- n 2. 4.56):

i'.-:ENI,.- e 1•(t1 'M (Mi ' (- (2.4. 66)

ro-.i-nM Z. 4. 68)

Dctp.2, " rw •)r(t)-r • p pt- -ni

D::: (A2 a 2dZJ( 
(2.4.69)

. . "- - {z. 4.L(M)dA( 70)

"S" (P) (Z. 4.71)

~ Crp- s s;nVI (247

and hence finally using (a), (1b). and (c) in thc previous footnote

Le~.DsM. I D~4S~n)1W(2.4.731

I.ITS

Comparison of (2. 4. 51) and (24.73) leads to a simple relation between the distri-.
bution functions, namely

H L!(AO D (2.4.74)

using (2. 4. 14).

7..,
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It is reiterated that the preceeding relations. (2.4.61) to (2. 4.74) are valid

only in the transition region. Finally it iv to be noted that, in this region, both

distribution functions are directly proportional to the associated relaxation and

creep data, at the corresponding relaxation and retardation times. Thus the creep

curve traces out, as it were. the retardation spectrum. And similarly the relax-

ation curve traces out the relaxation spectrum.

Turning now to relations governing the complex moduli, (see Section 2. 3. 3)

we Myve

Mmt
S• • sin VI

The middle term of (2. 4.75) contains the factor Bx(p. l-p). the incomplete Beta

function, which very rapidly becomes approximated by the complete Beta function:

13.1(1P1 I~(~- Fi 5s'f (2.4.76)

Based on the observation that plots of relaxation moduli versus time and the real

part of dynamic modulus versus frequency are practically superimposeable, one

can equate E reL* E: ( 7•

which gives

Wt= [-sLin 1-0 (2.4.78)

Note that forn la. wt" 21
1 0-.63-7

nuZ. wta Z1w

n a0, )t a e- =0.560 ,

so that (cf. Figure 2. 17). in general. W t is well approximated by a value of 0. 6.

The imaginary part of dynamic modulus is calculated to be

-ifw (1+? N- ~~~N~ (2.4.79)

which leads to another simple relation

-ta"n 'r (Z. 4.80)

.i

° I.

•.. *1
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2.4.3 modified power law distribution function.

An alternate way of guaranteeing normalization of the power-law distribution

without introducing an artificial cutoff at T is by multiplying in an exponential

whose argument is approximately zero in the transition region. Thus (Z.4.51) is

arbitrarily changed to r.

"N(T)=ct-e uýcmmeý (2.4.81)

where the constant of proportionality, now over the entire time range, is determined

from (Z. 4.3) as

leading therefore to

4 w(T) -- (2.4.83)

This function, compared with others in Figure 2. 18, has first of all some very

interesting analytical properties. The mean reciprocal relaxation time is given by

( i•e =u -r=F{) (Z. 4.84)
1A4

at which value (e?> a Tl-() the maximum of the curve H( A ) versus A occurs.

Following now the same order as before, we calculate the .ssociated relax-

ation function as*

E~L ~ Me (2.4.85)

which also has the property that when t/ -C0 > 1. it generates a straight line in

log-log coordinates.

As before, the tensile stress during a constant strain. C a Rt, in obtained

by integration

EY .iQ 2 1(+kL'.K (Z.-4.86)

* A similar form can be fit to compliance data. see equation 4. 1. 3.
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The last item is the relation of the spectra. H'(/ ) to V' (,A4). The

Laplace transform of (2. 4. 85) gives

* pS,---.+(Eg-E.)p"e' r(.-v', P) (2.4.87)

so that
S.p)= -- Pe• ( -- n, -P) (2. 4. 88)

A complete analytical representation of (2. 4. 88) is given by

(2.4.891
-- e 1P l+El-0 n) 1

/.nd for large p. the asymptot'c expansion becomes

+ •,() -Y'+ 0 a
'Mal (2.4.90)

[.• MA i 2 ....

Making use of (2. 4. 15), it is possible to evaluate the retardation function:
"I '.....

i ~(2. 4. 91a)
~(I-

L t(i) -J-

or asymptotically.

Ii- ('(-M+T Zz (2.4.9lb)

Figure 2. 19 compares the retardation and relaxation functions for the particular

case when n a 0.5 and 10 l0". The real and imaginary parts of the complex

dynamic modulus are obtained by letting p a iu) in (2. 4. 87), namely

to Cos (W +!t)(v) (Z.. 4. 92a)- Z

, F(zm-v-%) (Z. 4. 92b)".-(� . .-- - .Mai
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Tha associated asymptotic expansions are:

"Y_ _o______ ( 4. 93a)

S- (Z. 4.93b)

Figure 2. 20 is a Nyquist diagram which shows the relation between the magnitude

and phase of the complex modulus. Note that for low frequency (u)-4-o), the phase

relation is given by

- - _annv~L (2.4.941

which is identical with (Z. 4. 80) for the cutoff power law distribution.

"2.4.4 The Cole distribution function.

A third distribution function which has proved useful in fitting dynamic data

is given by

2 sin____sin_

-W 2 cos!j 1M + 4 Ir [cosill + cosh (2.4.95

Figure '.. 18, the so-called Cole distribution function(2" 81 is compared with the

smoothed power law fun.xion. Note that on the log scale the Cole function is

symmetrical about the point ja 1 , whereas the smoothed power law parallels

Sonly the left-hand branch of the Cole. Furthermore, the Cole function has a

maximum at j)ao a 1, the value of which is equal to

"tan'"A" (Z. 4.96)

whereas the smoothed function has a maximum at u/i& a n. the value of which is

equal to

ne. (2.4.97)

I.!._

- . .- . .
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Noetatfr '(OI~COLE '()ju SMOOT1HF0 POWSQ LAW

0. 32 3ntE1~ ~~f -I'' 2 .f I O

TayE - 0.3 --- r2 c.2

so that the Cole distribution always peaks at a lower value than the smoothed power

law function.

The Cole function has the merit of casting the dynamic modulus into a rather

simple form, na..-ely:

ES-Ee • + U

.(24.98) -I U6v l l .:

Note that the operation involved in transducing the terminal equality of (2. 4. 98) IV

the inverstion of a Stieltje transform (cf. (f), earlier). Figure Z.21 shows tl\-

excellent straight line obtained in the rectification of dynamic data obtained fo:.

glass-bead filled polyurethane binders(" 9)

The associated expressions for Erel' (7tensa E". L(,). and Dcrp involve

quadratures which cannot be reduced to simpler analytical representations. Thus,

also the Cole distribution provides an excellent representation of dynamic compli-

ance data. although it does not lend itself to generating simple associated represen-

t.-ciozis. For this reason, more attention was paid to the more tractable smoothed

power law.

2. 5 Temperature-time Shift Phenomena.

Up to this point, little or nothing has been said about the effect of tempera-

ture upon viscoelastic processes represented by tensile, creep, relaxation, and

dynamic data. In order to gain insight into the mechanism bi which temperature

influences viscous processes, let us examine a typical creep data obtained on a

polyurethane binder filled with 600/0 ammonium p.!rchlorate (Figure Z. Z2). in

which compliance is plotted versus time on log-log coordinates for various temper-
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atures. Note that the individual curves suggest that a displacement alonZ the

absicissa in the appropriate direction will bring any two into conjunction. This is

equivalent to stating that the curves obtained at the higher temperatures can t-t
brought into conjunction with the one obtained at the lowest temperature merely by

dividing their time scales by a set of factional numbers, one for each temperature.

The resulting master curve is shown in Figure 2.23. The associated temperature

dependence of this shift factor for each curve, according to itw temperature, is

given in Pigure 2.24.

This so-called superposition process has been shown tc hold for -nany types

of viscoelastic data. It reveals itself, for example, in the dynamic data of

Landel(2 9) used in Figure 2.21. It was first used by Tobolsky in reducing relax-'

ation data(2 10) and since then has been used by many authors, notably T. L. Smith.

who has reduced ultimate stress and strain data from GRS rubber(2" 'I) Workers

in the solid propellant field have also applied this scheme to the ultimate stress and

* -strain properties of various propellants and Figures 2.25, 2.26, and 2.27 show

such typical data for a polyurethane, a polybutadiene-acrylic acid. and a plastisol

binder, respectively.

The fact that this scheme -sorks so well for'polymeric materials suggests

that there is something rather simple in the nature of flow processes of polymer

mo~ecules. It was first shown by Leaderman (Z. 12) that the solution viscosity of

polymer molecules above a certain minimum chain length is independent of chain
length and dependent only on temperature. Secondly, it was sClown .,y RouseS(2 13)

that the distribution of relaxation times governing solution viscosity is strictly a
function of chain length distribution. Zimmn2 .14) then extended these statements

to bulk viscosity. It follows therefore that a given relaxation time, r-is charac-

teristic of any one element on a mechanical model, or of the ith flow segment in a

polymer chain, must depend separately on temperature and on chain length.

,Ar (") (i.s.1(

where we shall arbitrarily associate the time dimension with the temperature

dependent factor.

To understand the implications of (2. 5. 1), consider the expression which
represents the relaxation of a discrete model in uniaxial tensica

1i (2.. Za)
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After introducing (Z. 5. 1), we have

= L (Z.5.Zb)

and, neglecting the linear dependence of the spring or non-flow se,, t.r upon the

absolute temperature, it becomes immediately obvious that there will be no change

of the relaxation modulus with temperature, providing that the physical time, t, in

divided by a temperature dependent shift factor. The behavior is thus reflected

solely in a reduced time parameter. t/f(T). This example illustrates the general

principle of temperature -time equivalence.

At this point there is some arbitrariness in a precise specification of f(T).

and t.here are various more or less equivalent ways to remove it. The various

curves, each at a constant temperature, may be shifted so as to coincide with any

one other curve, having its associated temperature, say Tref. This is equivalent

to saying that after the curves are all superimposed, a shift bodily one way or the

other over the temperature range of interest (-60°F to +160 F) does not affect their

superposing into the same curve. Furthermore, one may proceed to divide the

physical time by the arbitrarily selected shift factors to obtain the reduced time

plot versus t/f(T), anticipated from (2. S. 2 ). Depending now upon how the scale of
the abscissae is fixed, one can obtain different characterizations of the reduced time

parameter which affects the convenience of data presentation.

One such convenient representation stems from Tobolsky's{2 10) suggestion

that a good analytical representation of relaxation data may be obtained using the

fact that a plot on probability paper of

loci EtI.- fo4JE.

L, 'EC - Ro~l=-eM

yields the straight line

I - e4rfYo-,) (Z. 5. 3a)

where K(T) is taken to be that value of f(T) at which t/f(T) equals unity. The value

of h is the reciprocal of IV times the standard deviation and for most polymers is

of the order of 0. 4. With this provision, t/K(T) a I corresponds to the inflection in

the relaxation curve at which point

!o0 EeL- IoE. . - (2. 5.3b)

2
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In other words, at the inflection point the relaxation modulus assumes its geometric

mean value

- ML= 5 (Z. S. 4)

Tobolsky has furthermore shown that at this particular value the shift factor where

t/f(T) a 1. the curve of K(T) versus T has an inflection point which he specified as

the distinctive temperature Td. This particular value of Td and K(Td)ZKd is of no

immediate interest to stress analysts, but does have some meaning to rheologists

interested in polymer mechanics. As a point of fact, however, Td is usually not

more than 10°F above the glass transition temperature. Nevertheless, it develops

that the portion of tht shift factor curve which does concern engineering analysis.

generally at temperatuves above Td# can be well approximated by (Figure 228)

fKMT -16 (T-Tt)azr
* LO~ ~too +T--T 4

where T is expresred in degrees Fahrenheit. For example, Td -8OF for an

Sunfilled polyurethane binder and Td = 0 F for one type of polyurethane propellant,

The shift factor for most polymeric materials is Kd- 2 minutes.

..* A second convenient representation scheme for reducing data"( .1 casts

"the shift factor f(T) - aT in terms of a temperature, T•, which is arbitrarily fixed

at S0°C above the glass transition temperature. In this w%.7 one arrives at another

near universal temperature dependence for most polymers,

101• aT- o.÷"-r

where T is expressed in degrees Centigrade. The use of this shift factor tends to

place the glassy behavior of the relaxation modulus at unit reduced time scale

"t/a a 1, whereas the Tobolsky scheme places unit reduced time, t/EM=l, in the
T

.- transition region.

Returning now for a moment to the relaxation e•ta, we may now proceed'to

identify the arbitrary constant, Ato. in the power law representation of the data. We0I

1 (2. 4.85

Mg - 1E, (2.5.7)

* .. . . .

"". I.
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where it is now evident that it can be associated with a temperature shift factor&
"K, A40 •a 1f(T). Now near the center of the transition region where E*<c E<,CE 5

we have the approximation

C*. - eg (AA.t)UI (Z. 5.8)

On t•.• other hand, when the argument of the error function in (2. 5. 3 ) is near unity.

which implies 1/30 < K 4 30, we have the approximation

and thu-

A comparison of (2. 5. 8) and (2. 5. 9) indicates that the log-log slope similarity

requires
"- n (ZS.0

and for t--4K, the relaxation moduli will be the same if

or

,,.(]-•'•'"" (2.5s.1])

K( T)

which thus specifically identifies the heretofore arbitrary constant.

Note that since log (Eg/Ee) is approximately three for most unfilled poly-

meric materials, it follows from (Z. 5. 10) and h=0.4 that n=0.7. whereas in

filled materials log (Eg/Ee) -= Z, then n = 0.5. These values have been generally
substantiated.

In conclusion, it may be remarked that the existence of a temperature-time

shif' correlation is important in making an engineer'ng analysis. Under certain

conditions to be discussed more fully in the following section, it is possible to rnake

some progress in answering the question: At what temperatures and loading times

will it be sufficiently accurate to treat the propellant material as essentially elastic.

allowing possibly for a linear variation of the spring or non-flow elastic glassy or
rubbery moduli with temperature, and when must the full viscoelastic analysis be

employed. This problem becomes particularly difficult when combined heat flow
rates and mechanical loading rates result in strain rates failing within the transition
region.

- .-- ,.-,w ,*- 1:. . . ..- '1 -I--,--- -
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2.6 Mechanical Property Determination

We shall discuss in this section what might be called the minimum amount

of information needed to calculate viscoelastic stresses and strains in complex

geometries, for which the temperature is spacewise and timewise constant. First,

the minimum test requirements will be reviewed, and then V-_ ah.nll show how data

obtained from these tests can be used to determine modetl parameters, i.e. the

constants in the operational moduli or compl.iances. The previous Section 2. 4 dealt

with the problem of determining operator equations whi'ch represent actual material;

response quite accurately,over the entire time or frequency scale through the use

of distribution functions. However, we shall restrict outselves here to simple fini.e

element models which are capable of representing actual behavior over only a limited

time or frequency scale. It will be shown later in the Engineering Anr.lysis. Section

3. 2. that the stress analysis is often greatly simplified if it ;s possible to use an

approximate model with only a few elements--usually no more than four or five.

These models will probably be sufficient for calculation of strains induced by ignition

pressures; however, it is not clear at the present time that they are adequate for

the long-time environmental slumrp problem. Indeed, with the inclusion of temperature

variations, the complete distribution function may be needed (or some other equi-

valent method of representing the stress-strain behavior over the entire time scale,

such as using convolution type integrals with relaxation moduli ). At this stage,
however, convenient analysis techniques have not been developed which can be applied

to this long-time thermal problem. Therefore, model fitting methods will be dig-

cussed here which are directly applicable to the short-time ignition problem.

2. 6. 1 Minimum test requirements

The determination of mechanical properties for standard engineering metals

has been reduced to more or less of a standard procedure where reference may b-•

made to various publications of the American Society for resting Materials (ASTM).

Without attempting to inf,;r that these tests are always simple. commo.n usage has

caused them to become well known and standardi:;ed. It is customary to determine

the Young's modulus from the slope of the stress-strain curve and Poissonos ratio

. by orthogonal strain gage measuremeh'ts on a tensile specimen. Viscoelastic

materials, and rubbers in particular, are characterized by relative. softness and

- -large extensions before fracture. In the first place, normal strain measurinS devices

such as wire resistance gages and mechanical extensometers do not work. Second,

*-• the large extensi-ns also usually exceed the range of common ihdicators. For this

-J,
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rea~ro,optical trý,cldng of bench marks or crystals and the use of birefringent

coatings has frequently been employed, although data reduption anC analysis is

'- -further complicated by the necessity to accumulate time histories of the stress and

strain.
For these and other rer. 3ons the customary test used in deducing propellant

properties is a uniaxial tensile specimen stretched in a controlled displacement

machine which simultaneously records the applied force. The standardized specimen

is shown in Figure 2. 29. From these remarks it is seen that the basic data is thus

force and displacement. The former can be easily converted to stress by dividing

by initial cross sectional area, Ao. for small strains or the local area, A, if the

strains are large, providing the Poisson's ratio is known. In the case of uniaxdal

tensile specimens, the transverse strains, CM a E a - W C-5 can be used to
X y 2 2

compute the local cross sectional area as A a A0 (l+ 6 x) A (1--•e ) * from
which the true stress, & . becomes

W p A.(_--

For most propellants, it is often permissible to assume incompressibility (J =I)

in which th. true stress for non-infinitesimal strains becomes
=- a. - o r, '

where the definition of extension ratio r I + e has been used.

The determination of the local strain corresponding to the calculated stress

however is another matter in the absence of direct measurement. If the elongation

measured during the test is divided by the nominal gage length of two inches (see

Figure 2. 29), a poor determination of strain is deduced because it has been found

tUa 'here is a flow of material in from the jaw area which tends to increase the gage

lei ) an effective length of approximately Z. 7 inches. In addition, there is tue

visct-s deformations contributed by the flow near the jaws which tends to confuse

the accuracy. Some recent work incorporating square flat ended specimens bonded

to metal plates has been reportedZ. 17) which may tend to eliminate much of the

effective gage length controversy, providing satisfactory bonds can be made for all

the propellants of interest.

For the time being however, unfortunate as it may be, the analyst will

gcnerally have at his disposal only force-displacement data to work with, from

which a nominal or true stress-strain curve is deduced. Of course, when more

accurate data becomes available, it should be utilized for determining the mechanical

properties.

It 
", -W 71
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One other preliminary point must be covered. It has been mentioned that the

various operator equations, with certain physical restrictions, may be used to

represent either bulk (dilitation) or shear (distortion) behavior. As a practical

matter, at the present state of the art, it is usually sufficient to assume the pro-

pellant to be incompressible, or at most elastic. In either case, whether the bulk

modulus C - co or K ia finite, the dilitation behavior is non-viscoelastic by as-

sumption. Hence. only the determination of a viscoelastic operator in distortion,

A (p) (or its inverse j(p)). or in simple tension. E(p) (or its inverse D~p)) is

required, along with perhaps measuring the elastic bulk modulus. If this assumption
is adopted, any test which yields Al (p) or E(p), will suffice. In particular, if

K -e o or is even large compared to the shear modulus, (Z. 2. 9) indicates that

A4 (p) a E(p)13 so that the tensile test is sufficient to deduce the desired properties.

By way of review, then, the present minimum requirements call for:

1. Measuring an e'-.stic bulk modulus, or assuming
incompressibility (K a co; and

Z. Measuring the uniaxial viscoelastic tensile modulus.
using the best available stress-strain measurements
"in order to determine the shear characteristics of the
"propellant.

"" Even though the simple relaxation test is the one most commonly used, data

- "" obtained from this test is not necessarijly the easiest to use for model fitting and

stress analysis. But the data which often fits most naturally into well-established

techniques, and is most accurate with sn.411 strains, is procured froma dynamic

tests*: namely, measurement of displacement (or load) when a steady-state sinusoidal

load (or displacement) is applied.to a specimen in simple tension or shear. We shall

not consider the details of this test. or others, since comprehensive presentations of

viscoelastic testing methods can be found in the literature, especially reference (Z. 18).

However. if one does not have dynamic data available, it is possible, in principle, to

calculate the dynamic modulus or compliance from *ther tests by using the appropriate

expressions given in Section 2.4. This procedure will probably yield less accurate

results than obtained through direct dynamic measurement, but the advantages of

"Eourier analysis methods which can be used with dynamic data may be sufficient to

warrant this data conversion.

* It will be seen later in this section that a simple graphical scheme can be used
with dynamic data to determine the parameters in a four-element model. Also in
Section 3, it will be shown that dynamic data can be used directly in the Fourier
inversion integral to calculate strains and stresses, wherein rtither an analytical
representation of the data nor models are needed.
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We shall now consider some specific methods that can be used to determine
the spring and dashpot constants in simple models from relaxation and dynamic data.

2. 6. 2 Fitting simple models to relaxation data.

As we shall presently show. the response of simple models can be made to

agree cloaely with experimental data only over a very limited portion of the time
scale, so that it is necessary to first specify this time interval. This is dictated

by the loading time history (and the temperature of the body) assigned to the
particular stress analysis problem. For example, if it is desired to determine a

model for the calculation of stresses in a grain induced by ignition pressures, then

one would assume a time, say tf, beyond which failure is not expected. Model

parameters would then be found by curve fitting model relaxation response (or creep

response) to experimental values over the time interval, 0 - t 4 t

* The material in a pressurized grain is not strained step-wise in time, bu
generally has a strain-time history which is not only quite different from that realized
in a relaxation test, but also it varies from point to point in the grain; hence, it is
not obvious that a good fit of m-odel relaxation behavior for 0 t t t f implies a good
approximation to ignition response for the same time interval. However. that it
does, follows from the fact that stress response to arbitrary straining can be written
in terms of an integral of the relaxation modulus. This representation can be
derived very easily with transform theory. Assuming zero initial conditions, the
transformed stress-strain law is

which car. also be written in terms of the transformed relaxation modulus
r rel(p) = m(p)/p,

, .( r)) = " . . .) ' P '( P ( b )-

This is inverted for arbitrary straining by using the well-known convolution theorem,
which yields

This is also known as the Duhamel representation of the viscoelastic stress-strain
law. It is clear from (c) that knowledge of the relaxation modulus for 0 I t t
completely specifies the stress-strain behavior over the same time interval.

• .° _
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As a simple example, let us now fit a two-el.ement Maxwell model (Figure
2.6) over ar interval 0 f t v t1 by matching its tensile relaxation modulus to

experimental values E(t) at two intermediate times, tI and t.. The two-parameter

system with material constants Em and *m yields

cto), I = F- (P. 6. 1)

tfrom which it is easy to calculate that

so that the tensile stress-strain relation becomes

___________ J0(t) vj '.. "t.j• - de(t) (2. 6. aS)
wad(t-.0 t -tg-t cit

"and the operational Young's modulus is

F-,e-xp[ta!'n(AII)/ts-.t.i] P
(2. 6. Sb)

If the range 0 to tt is excessive, the fit will not be good and additional elements

must be added.

This collocation procedure is straightforward, but rapidly becomes alge-

braically complicated with an increasing number of elements because of the transcen-

dental character of the simultaneous equations. Other procedures could be used,

such as minimizing the square error between model and experimental relaxation
moduli, but one still has to solve transcendental equations to determine the parameters.

= •Nevertheless, in order to illustrate the difference between simple model response

and experimental data, and to show the effect of adding elements, we shall compare

* •the relaxation moduli of three and five element models to experimental data (repre-
sented analytically by means of the distribution function for the Wiecbert model).

The material used is polyisobutylene (PIB) whose relaxation spectrum in tension can

7
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be represented quite well by a modified power law for the glass-to-rubbe-

transition region 2 " 19)0.

e (.6.6)

where n a 0.68, and is a known reference constant. The relaxation modulus

corresponding to this distribution function is (see equation 2. 4. 83)

r.LWMj = ,.+ (Ms- E.)(I+4-) (+. 6.7

The relaxation modulus for the three-element inodel is, from Figure 2.?.
Enm". 3(t= "€ (=s5 F.)e. (2. 6. 8

and for the five element, Figure Z. 8. is

M e (Z. 6.-9)

The comparison shown in Figure 2. 30 is presented assuming that the glassy

modulus, Eg, is the same for all the models, and further that Ee <' E . This

latter assumption allows us to neglect E e/E in the foregoing expressions as long
as we consid-r only the short time response. The arbitr•ry parameters of the

three and f2 -nent models (which are reduced to two and four element models

by neglectin6 E. /E ) were chosen in order to fit the polyisobutylene modulus for
0 -4 thc0 4 10. The particular values used are

I 0.30 1 2.11 1 o.20 MI .5 26.0,'-. -•.'• i' (2.-6...-1o.0).

* Polyisobutylene is uncross-linked, so that it does not have a true equilibrium
modulus. However, molecular entanglements provide an apparent equilibrium
modulus which maintains a relatively constant stress for some time after the stress
has relaxed from its initial glassy value. But after a sufficient amount of time
elapses (this time depends on the molecular weight) the stress again falls off and
approaches zero. Thus, the value E in (Z. 6. 6) represents this apparent equilibrium
modulus. But we shall later neglect eE when fitting models to the very short time
relaxation modulus since Ee/E <C 1.

e!
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Stresses in a constant'strain rate test are also compared in Figure 2. 30.

The pertinent equations. obtained from Figures Z. 9. 2.7d, and 2. 8d are: 4D

Wiechert: +v- 0+ _____(26.

Three element: .. Z..o -.t( )~ \(..2

Five element: 0 t - - ÷.L(I- -- '1 ( 6.13)

The comparison clearly shows that a few elements are insfficient to describe the

behavior of PIB over a broad time scale. such a conclusion has also been found to

apply to propellants.

Now that the model parameters (2. 6. 10) are specified, we are in a position

tc make a viscoelastic stress analysis by using the operational modulus of either

the two or four element models (we have neglected Ee for short time response).

If it has been determined that it is necessary to take t, e 10 -o. for example, then

S-four elements will probably suffice; if the stress analysis is made using only the

-. Maxwell model, large errors may be introduced in the solution due to the poor fit

shown in Figure Z. 30. Or. the other hand. if we take tf . 20 'r. then it is not clear

-- that even four elements are enough to obtain a reasonably accurate solution. In

view of this uncertainty regarding the error, as well as not knowing a priori which

portions of the relaxation curve should be weighted most heavily in fitting the models.

we will present another method which does not contain these shortcomings. -and

which makes use of the more accurate dynamic data.

'* *2. 6. 3 Fitting simple models to dynamic data.

Spectral analysis of the loading. - A method employing the complex frequency

dependent moduli or compliances has been proposed by Lee(?* 20) for fitting the data.

which we shall illustrate by applying it to the grain ignition problem. As the

response of finite-element modelacan be made to cokrespond approximately to actual

behavior only over a narrow frequency band, it is first necessary to determine the

range of interest by making a Fourier analysis of the loading function. The example

will eventually be carried through to the calculation of strains in a pressurized case-

bonded grain. At this point, however, only the characteristics of the pressure

loading need be defined; the geometry will not enter in until after model parameters

are calculated.
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A pressure pulse is transient rather than periodic so that it cannot be
represented exactly by a series of discrete frequency components; rather it must
be given by a Fourier integral in which frequency is a continuous variable. Never-

theless. for practical purposes, it is sufficient to consider the grain to be loaded
by periodic pulses spaced far enough apart that most of the strain introduced by one
pulse relaxes out before the next one is applied. Clearly, then, the response to

each of the widely separated pulses is very nearly the same as for the transient
load. Consequently the important frequencies in a transient pulse can be determined
if we consider not only the time scale of interest in regard to the possibility of

mechanical failure, but also the viscous properties of the propellant.

For our example, it will be assumed that pressure pi(t) increases linearly
with time from Pi a 0 to Pi a Po at t a ti. and then remains constant. In addition

we will assume that from the standpoint of failure, response only up to t a 3tift tf

need be considered. Thus. the periodic function shown in Figure 2. 31 will be used
in the analysis. Symmetrical waves are indicated since they lead to a simpler series

than obtained if the pressure is removed instantaneously. The number of terms
required to represent the function sufficiently well by a finite Fourier series will
now be found. We have chosen the ratio of root mean square error between the
series sm(t) and the exact function p1(t) to the pressure averaged over its time of
application as a criterion of accuracy. This is indicated by *(n, in the figure.

0m can be calculated quite readily as a function of tl/TF and m by the relation(2 21):

q ~L (t) -S, (t),1dt P~' M (tdt --+Za,, (2. 6. 14)

where a are the Fourier coefficients in the cosine seriesn U
S. M 7 - a, . conwl••

where .
4- 4P"r... I . wrt, 3nirt.- . • _•,s --n sin

- 'Rat, zT

From symmetry. (2. 6. 14) can be written as

4U[I'm .(t)Im t -! T a( .

yielding for at

Z,'s .n-,r~n T - n (Z. 6.16)

which is plotted in Figure 2. 31.

-o o
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We now choose the value of tl/TF such that the time between the end of one

pulse and the start of the next is twice the total length of a single pulse (4tl).

Subsequently, when the solution to the strain analysis problem is obtained, a check

must be made to see if the time between pulses (8t,) is sufficient for most of the

strain to relax out. Thus, we take

4t,-+ S't., = 2t

"Tv 24 '

In addition, we assume that when Oat A 0.05 the function is given accurately

enough by a finite series terminating with n a m. From Figure 2. 31, we take

m a 13. The lowest frequency (f) in the series is fI laT * the highest is f a 13/T 1 .

In terms of tI

24t, 241 t (Z.6.l7a)

A typical value of 0. 01 seconds will be used for t1, so that

4 Cps. 52 - . . cps. (2. 6. 1'ib)

Graphical determination of model parameters. - In view of the present lack

of appropriate data on propellants, the analysis will be carried out using the dynamic

shear data in Figure Z. 32, which was obtained by Landel(2 " 9) and is for NBS

polyisobutylene (PIB) filled with 36. 70/ (vol.) glass beads.-.This idealized filled

material exhibits the same qualitative behavior as a typical composite propellant,

so that the results should be very useful in evaluating the model fitting technique

when applied to propellants.

The complex compliance is represented in Figure 2. 32 by its real and

imaginary components as functions of reduced frequency. w is the frequency in terms

of radians per second, while ast represents the temperature shift factor which is

discussed in Section Z. 5*. Thi;. factor is defired to be unity at 12. 50 C, so that the

master curves in Figure 2. 3Z give the actual complex rompliance frequency de-

pendence when the material is at 12. 5oC. If the material is at temperatures other

than this value, it is necessary to compute the corresponding values of at in-order
T

to determine the frequency dependence.

* The shift factor is now designated as a' . rather than a . since the temperaturg
at which it is defined to be unity is not theTstandard referefice temperature(T .- Z3 C
for PIB with 36.7% filler). This different normalization was used b)ecause t~he
original data was given at 12. 50C. The two shift factors are proportional to each
other, with the relation being:

a, ; (12.5S)
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responds to pressure with a large time effect. It was found that a temperature of

-35 0 F (aiT U 104) gives the desired result if t1 a 0.01 seconds. (With a highly

filled propellant, the time effect is often quite significant at temperatures on the

order of +40°F due to the compactness of the filler).

The frequency shift, being exponential in temperature, is much more .. -

important than the linear shift in the ordinate indicated in reference 2. 9; so for

simplicity we will consider only the effect of temperature on the frequency scale

given by a'T. This allows us to use the master curve drawn at 12. S°C directly

for -35°F because

Lo2 (U-Lo2 wa~r-Loq a'=Lol wa;,-4 (..8

That is, by subtracting four from the absrissa values, the actual compliance

frequency curve is obtained for use in the example. Since frequency on the master

curve is in terms of radians, it will be convenient to express the frequency range

given in (Z. 6.17) in terms of W a Zwf:

1. 4 Loci W Z.S
or

S.4A Lock wa;46.s (2.6.19)

Now that the frequency range of interest and temperature are specified. the
model parameters can be determincd using a method described by Bland and Lee(Z 22)

It is shown in their paper that a simple graphical scheme may be used if the model

contains no more than four elements; i. e. two dashpots and two springs. Therefore

we will use the four-element model in Figure 2. 13a and, as special case3, the two-

element Voigt and Maxwell models in Figure 2. 11. It should be remarked that the

models can often be chosen independently of whether the material is cross-linked

or uncross-linked. It will be recalled that an uncross-linked polymer strainc

indefinitely under a constant load; and that, in principle. this should be accounted

for by a free dashpot such as in Figure 2. llb. However. when the freq% nry band

does not include (0 u 0 such behavior does not appear. In addition, if t' Ltrial

is enclosed in a case under constant internal pressure, unlimitf .. . prohibited

due to the presence of a bulk -nodulus which causes the strain to approach a definite

limiting value.



The complex compliance of the four-element model is obtained from
Figure 2. 13a; however shear behavior is to be represented by the model so we let

k -a 3 and write the real and imaginary components as

3U I ,o5  (2.6.20).

j . , WZJ, - . (6. 2i- + CO.+

In order to make a strain analysis of a case-bonded grain, it is usually necessary to
know two different moduli or compliances. Thus, in addition to the complex shear

compliance, the bulk modulus K will be used. A reasonable assumption is that bulk

response is elastic so that K is constant. A typical value for K is 2 x 106 psi or

13. 8 x 100 dynes/cmZ. With this in mins, it will be convenient to consider the

nondimensional compliance K3e. Defining
4,( o =Ki ' w , 4 ( ) K J"cW))

(2.6.22)

Bat- J B'= K3 Ba=-

. the compliances (2.6. 20) and (2. 6. 21) become

•(W) Bg , + O't , (Z.6.23)

*3 and 4" can be combined to yield

cM I . ~w B +9'+B& (2.6.25)

which is the equation of a straight line if wo 4"( w ) is plotted against +1(wo ). The

slope is -"Irk and the intercept on the w *"(W ) axis is(8 1 + Sz + 91r, . Hence

Sb 1" plotting the experimental data of Figure 2. 32 using w *" and +' as coordinate-,

the model parameters Z and 91 + a 2 + B are determined by a best straight line fit

in the previously estimated frequency band. This is done in Figure 2. 33, and the

parameters are found graphically to be
B'+ 92+- Bg=!&

T, o.9251IO-• see.

Now tbatr 1 is known, it can be used to plot experimental values of #0 against

+ -)" . It is seen from equation (2. 6.23) that the four element model is
a. again represented by a straight line, but now with slope aBI and with Ba as the *'
* .• intercept. Carrying out this, we find from Figure 2. 34 that B a . B u 6. 5,

g
and 8B2 9. S.

4 . . . • . - " . : " - , - -- . . . - .. . . . . .
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The parameters in the two-element models of Figure 2. 11 will now be

determined. In terms of shear behavior, the complex compliance for the Voist

model Is given by

J(W) WS T's• + I (Z. 6. Z6)

J, (W ). (Z. 6. 27;)

Defining

V~(w)= Kj'kw),, 4r(W)= rj"(V)', Bv, Kjv (2.6.28)

the nondimensional cormpliances for the Voigt model are

÷'w 3 1=(z. 6.z9)

WS t",+ I
WTV BV (2.6.30)

These are the same as +' and +11 for the four-element model if we set 82 a •3 a 0,

av a Bit and tv a ,- Thus, the straight line equation (Z. 6. Z5) reduces to

(2.6.31)

By andrv, are given imme-'ately from Figure 2. 33 as

Bv-ro( I 'zv=0 .925)1O" sec.

Figure 2. 11 provides us with the complex compliance of the M4axwell model.

•'(• S,,(2.;. 32)

(2.6.33)

where
""1 $. - ( 2..6 . 3 4 )

4'(k)=KJ'(w), 4"(w)=KJ"(w), s J , L-•- B (.

Bm and B are determined numerically such that 4' and 4s" take on the experimental

values approximately half-way between the frequency limits, indicated in

Figure Z. 33. as
I -

Ba 3O ,0 3--- .3 12 x i0's Sec.-
3200
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The-four ale-,nent model can be reduced imn-ediately to the three element

model in. Figure 2. 12a by setting A~ a o0, and by definition this requires thatS. 0

in equations (2. 6. 23) and (2. 6. 24). It is observed that with three elements

and further. from (2. 6. 23) And (2.6. 24) that when (hf?+ 1) a 1.
Bas-+s-=66~u

Reference to Figure . 34 shows that a straight line passing through 0 a 6 at

( w't + 1) a I fits the experimental curve beat if the 4,' intercept is zero. This
requires 8 a 0. thereby reducing the model to the Voigt. Thus. four elements

9
must be used to obtain a better fit thran offered by two which justifies omission of(

the three-element model in the strain analysis problem.
* The nondimensional compliances 4,0 and +1" are plotted in Figure 2. 35 for

all three models and compared with the ex;perimental data. In addition. the

comnpliances for the four-elc, sent model are shown in Figure 2. 32 in order to

clearly illustrate how the model response compares with the~ entire experimental

master curves. It is interesting to note that both +1 and +" for ",ur elements are
reasonably close to the actual response. However. with the Maxwell model., #P

is in considerable errcr. while 4," is somewhat better. Conversely, with the Volgt

mode%, *0 it satisfactory while +1" deviates considerably from the experimental

values.

In Section 3. 2, all three models will be used to carry out a strain analysis

of a case-bonded grain in order to compare their respective responses.
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3. ENGINEERING ANALYSIS

The first two of the following sections are devoted to the problem of

calculating jiscoelastic stresses and strains in complex geometries when the
material behavior is known through the representations discussed in previous

sections. As a matter of background information, viscoelastic stress theory is

reviewed for the case of mechanically induced stresses and strains in bodies at a

umform, constant temperature. In particular, it is shown how elastic solutions can

be used directly in the viscoelastic analysis. This methlod of using an "associated"

elastic solution is then illustrated with some examples of the estimation of vlsco-

elastic strains in long, hollow, circular cylinders subjected to internal pressur-

ization. Several different property characterizations ara used to compare their • ,

advantages or disadvantages in obtaining solutions. Following these examples, we
• ~show how viscoelastic solutions for cylinders with circular ports may be extended '

to include the more common star configurations.

•.' A collection of useful elastic solutions are then given which can be extended/

to viscoelasticity by use of the association analogy, and the final section contains

a discussion of several additional grain design problems of current interest.

3. 1 Review of Viscoelastic Theory

"The equations governing the mechanical behavior of viscoelastic bodies in

which the strains are smell are the three equ'librium equations (1. 2. 1); six strain

S•. displacement relations (I. 2. 2); and six stress-strain equations that are similar to

the well-known ones of elastic theory (1. 2. 3), but with differential operators in

place of the usual elastic constants. Thus, it is seen that the only difference between

the governing system of equations of lit-ear elasticity and linear viscoelasticity lies

in the stress-strain relations.

The form of these relations was discussed in Section 2 for- the simple cases

of tensile, shear, and bulk deformation of isotropic bodies. In .ddition, it was

"pointed out that only two of these transfer functions relating the stress and strain

are independent. The way in whicai these two enter in the general three-dimer-ional

stress-strain equations is purely a consequence of geometric symmetry of isotropic

bodies; therefore the stress-strain equations of elasticity and viscoelasticity are

identical in form, but with any two of the viscoelastic operators E(p), K(p), or .A (p)

in place of the elastic constants E, K, orl . The viccoelastic Poissonjs ratio is

defined by a ratio of the more basic operators through equation (2. Z. 10), and

generally will have to be replaced by these operators when solving a particular

problem.

.. o.
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We turn now to a discussion of a convenient met- 2d of solving the governing

equations of viscoelasticity for a wide class of problems of practical interest,

which was suggested by Lee{3 I). The equations are all operated on with the

Laplace transform so that all dependent vaxiables become functions of the transform

parameter. p. rather than time. Assuming zero initial conditions, and denoting

transformed variables with a bar, it can be shown that we obtain the transformed

equations by simply placing a bar over all variables in equations (1. 2. 1) and (1. 2. 2)o

and interpreting the time derivatives in the transfer functions E(p), K(p), A (p)

as the transform parameter p. For example, the ?quilibrium equation in the

x-direction becomes •'-0 " (3.1.0

Similarly, the transformed stress-strain equation for G (1. 2.3) .s written

The transformed equations (I. 2. 1) and (1. 2.2), along with transformed boundary
conditions, represent a complete set for determining the transformed dependent -

variables stress, strain, and displacement. Once these variables are found as
functions of spacial'coordinates and p. the Laplace inversion integral (or transform

tables) is used to obtain the time dependent solutions.

It is evident that the transformed equations of viscoelasticity have the same
spacial character as the elastic equations; thus, if time and space dependence appear

as separate factors in the boundary conditions and body forces, then the transformed

solutions to a viscoelastic problem uill possess the same spacial dependence as an

"associated" elastic problem. That is. when body forces can be written as

X a X'(x) X{(t) (with similar representations for the y and z directions), stress
boundary conditions as Fx a F x'(x) Fx"(t) (in which F. is the x-component of surface

force per unit area), and displacement boundary conditions as u(x) a u'(x) u"(t). then
the transformed viscoelastic stresses and displacements have the same spacewise

dependence as those in a geometrically identical elastic body with these body forces

and boundary conditions. This correspondence has great practical importance sirce

viscoelastic solutions can be obtained immediately from the associated elastic

solutions by:

1. placing bars over dependent variables in the elastic solution;

2. r-eplacing the boundary and body force terms by the corresponding
transformed quantities;

3. replacing the elastic constants by the corresponding transformed
operators; and

4. inverting the resulting expressions by mneans of transform tables
or the inversion integral to obtain the time dependent solution.
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As a final point, it is generally sufficiently accurate to assume that the
bulk modulus, instead of being an operator, is a constant, i.e. an elastic respons%

or in the special case of an assumed incompressible material, K-"C. For this

reason, the final inversion step can often be considerably simplified if the trans-

formed solution is expressed in terms of the (constant) bulk modulus K and one

transfer function A4(p) or E(p), or their reciprocals J(p) or D(p).

A simple example. - In order to clarify the procedure of solving a visco-

elastic stress problem, we will first consider the simple example of a long, uncased,

thick-walled cylinder under internal pressure. The tangential stress in the associated

elastic cylinder is given in Section 3. 3. 2 as

~* apim) 1+~ (3.1.3)

Since there are no material ct, nstants in (3. 1. 3), it follows that the stress in a

viscoelastic cylinder is the same. However, this is not true for the radial dis-

placement

•b'-a) •r (3. 1.4)

For simplicity, let u's assume that the material deforms much more easily in shear

than in bulk so that 2) i and the elastic displacement becomes

3(3.1.5)

which "mmediately gives us the transformed riscoelastic displacement as

S(3.1!.6)

For the first representation, let E(p) = 'CvEv [p + 1/1tv1 corresponding to the

Voigt model, (Figure 2.5) . With a step pressure of amplitude po(pi a 0, t < 0;

pi a po0 t•> 0) the transformed pressure is pi 3 po/p and therefore

2 r(b'-.*) I'(p+ •I,•., ••7

-. 1 ~ ~ ~ ~ a I?-, * .. . . .

2 . - * -.2
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This expression is readily inverted by the tables to give the viscoelastic dis-

placemeunt.

" Note that as t -- w, u approaches the displacement in an elastic cylinder with

Young's modulus E. and Poisson's ratio V a

Had we used a four or five element model for the modulus operator, it

would have been necessary to solve a quadradic equation to invert the transform.

" Additional elements would likewise increase the order of the equation which has to

be solved to invert •I. However, if the elastic constant is replaced by the com-

pliance operator D(p). this would not be the case since the transformed strain then

becomes

- ( '-) (3.1.9)

With u Po/p, the displacement is just proportional to the tensile creep compliance

D(t),

1A 2 • - '" P. (• DM ;o

It is important to observe, in this connection, that it is not necessary to specify a

model, but only the experimental values of creep compliance, as determined in the

simplest test from a tensile specimen.

The responses (3. 1.8) or (3. 1. 10) can now be used to calculate the die-

placement for a general pressure-time curve by means of the Duhamel integral.

If we denote the response of any linear system to a unit step pressure by Rs(t),

:- .~.then the response R(t) of the system to a general pressure p(t). assumed to vanish

for t <.0, is given by ( 3 . Z)
Sis ' • (3. 1.11

"- . Thus, the radial displacement of the cylinder in terms of the general creep com-

- pliance is simply

X-• it)
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To summarize, we can state that this problem has illustrated examples

of the general rules:

I. An elastic and viscoelastic stress(displacement) are
identical if the elastic variable is independent of material
constants.

2. When the elastic solution is a function of only one material
constant which enters as a simple factor, the transformed
solution can be readily inverted if the viscoelastic operator
replacing the constant is chosen such that it appears in the
numerator of the transformed expression.

3. The response of a linear system to a step input can be used
to calculate the behavior under arbitrary time-dependent
loading.

3. Z Application to Grain Ignition.

We will now proceed to discuss, in detail, the calculation of viscoelastic

tangential strain at the inner surface of a long, case-bonded grain. The model

parameters determined in Section 2.6 will be used in this analysis, and it will be

assumed that the bulk modulus is a constant. In addition, erosion of the inner

surface will be neglected so that validity of the viscoelastic solution will be limited

to times which are short relative to the total burning time.

The associated elastic strain in a long, case-bonded grain, given in

Section 3. 3. , can be written as

5 '-•-k J�-t,--\P�.I-( (3. Z. 1)

where X a b/a, p' a pressure between cylinder and case, and the pressure ratio

pI/pi is
1p' 2 0,- V*l)

S<.-,- v..l 1-,- ý,- 2%,,) ,', I -t- <'','t - ) .-•-- . .z )

Since the viscoclastic properties were given in Sect'on 2. 6 in terms of shear corn-

pliance (3 = 1I/A ) and bulk modulus (K), equations (3. 2. 1) and (3. 2. 2) will be

rewritten in terms of these properties by using the relations (2. 2. 9) and (2. 2. 10),

which yields
E. 3-••" .- -42ý (i--V,2) c 14 (.*

a , (34t-; (3. 2.3)

2.. . . . . . . . .. .

~..xI
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where, for convenience, we have defined

from whih C3. 1. 4ar

. K- M--.- (3.L.)4b)

V÷2 1- 1+ B (3. 2. 4c) .

Typical values for the various parameters are K c x 10 psi, E i 30 x Is p

expici0t3y bfho (00, X =3 from which C = 13.l3. It is observed that the term$

Sacontaining (C) in the square brackets in H(o) are quite small compared to unity If

the above numbers are used. In fact, if they are neglectedd H(+) reduces to n a

(4-4- I.) + . )+ .80

Actuallyt b in the numerator 413 is neglected compared to fisK wiol disappear

explicitly from s3.2. 3i and the incompressible limit case will result. Further

ianalysis, however will show that for short tihe es, when f may be small. the 4/.'•-" ~term should be retained. If all terms are retained in H(*). we find in the numerical!I

,- " example that

2 : ' N • ) = t 0 ( ( ÷ 7 . R ( O ..1~).0 4 0 + .1 ( 3 . 2Z . 6 )

I~l so that both the numerator and denominator again become first order In 4P. This

i)[[!has particular significance in reducing the complexity of the viscoelastic problem

in which 4 is a transfer function. Using the expression for H(,O) from (3. 2. 6). the

strain is

es (3.2.7)

Since + is proportional to the grain's compliance, its limiting values are

"given by the material's long time (or zero frequency) value and the short time

(or infinite frequency) value. From the data for polyisobutylene in Figure 2.3Z,

the largest possible value for + is +( wm 0) a KXJ(ws 0) a 1. 38 x 10 4a and the

smallest #(w a co) a KJ( w•u co) a 4. 36. Because the minimum value of + is 4. 36,

the term -1 will be neglected in (3. 2. 7), and also we will let 4/I(3+I) i- 1/3. With

"these reasonable approximations, the strain is

2 •5[ P: ' X 64 (3.2.8)

kI



Without carrying out a viscoelastic analysis, the minimum and maimum t

values of CE0can be found for a pressure step p1 applied at t a 0 and held constant

indefinitely. The initial strain is given by substituting* 4. 36 into (3. 2. 8), viz,

F: ~(t = 0) a 1. 75 p1 x 1iO6 ; and the long time strain is given by using j.a 1. 38
X 10'% in (3. 2. 8), viz, e (t a c) u 25 p1 x 10 -6. Although it is tempting to compare

P. these values to the ultimate uniaxial strains, it is important to recognize that these

limiting values of strain do not, in general. provide sufficient information to predict

whether or not the grain will fail upon ignition; the failure criterion may not only
depend upon the strain biaxiality, but also upon the entire strain history and hence the

precise way in which CDvaries with time. (See Section 4)

To illustrate the various procedures, examples will be presented showing the

determination of time dependent responses for step and ramp type pressure inputs

typical of an ignition loading for a propellant grain. First, discrete -element models

willbe employed, followed by an exact solution in order to examine the accuracy of

the models and to investigate the practicability of by-passing models entirely by

OR using the Fourier inversion~ integral technique.

3. 2. 1 Two and four element (bulk elastic)-step and ramp pressure.

The strain will be found first for a unit pressure step and then this solution

will be used to find the response for a typical ramp type pulse. With viscoelasticity.

we look upon 4 as being a transfer function of the parameter p. For convenience,

we will write (3. 2. 8) as

2Sx~ I (Vp) (3. .9)

and define T(r) as the transformed, normalized strain due to a unit pressure step

sb(t) applied at t0 (si(t) a00 t < 0; sn(t) a1 t >o0);

L 46 Bl ) ,) 7.81 Pf (3.2.10)

i (t) will be found first using a four-element model. Recall that by definition

,{(p) at K0.(p), and that o(p) is given by the operational compliance k(p) in Figure 2. 13a.

Using the same definitions given in Section 2. 6. 3. 8 reo Bn K ha these

we have
se s3.ont e)wgn +
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S~Substitution of (3. 2. 11) into (3.2. 10) yields ,

After substituting the model parameters B 1. 50, B2 • 9. is g W
:- "a 0. 925 X 10"2 see. into (3. 2. 12) and then factoring the denominator. (p)

ebecomes

0.094 (..3

This can be easily inverted to obtain the time dependent normalized strain
-7.st -177.St

-(t= •-o.S4e - 0.37e (3.Z.14)

*/." which is plotted in Figure 3. 1 for three different time scales. The behavior of "

for short times. 0 4 t C 0.01. is governed by the second exponential in (3. 2. 14);

while the relatively long time behavior, t > 0. 03, is determined by the first

exponential. It is interesting to see that the time interval in which both exponentials

act is in the time scale of the pressure pulse.

The time dependence resulting when the two-element models are used is

found in a similar fashion. From Figure Z. 11. the operational shear compliance

for the Voigt model is
.K 3v , 5v

and for the Maxwell model is

"Substituting these expressions into the normalized strain 9(t), equation (3. 2. 10).

"we find for the Voigt model

P+ 1.93? TV"': "•tp) =o~or • il.•-(3. Z. 17)/
+).~ 9,,+6.S2 - (32.7

--- " 76. S2 X.1'

and for the .Maxwell model

+r

Bj 1 .. - 32..18))

+L:
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Inversion of (3.2. 17) yields for the Voigt model

0. 47 - OAS2.1

"in which we have used the previously determined parameter values of Pv 6a6. and
"TV a 0.925 x 10"2 seconds. Similarly. from (3.2. 18) we find the response for

the Maxwell model

F:. 71)= (3.Z.20)

in which we have set Pm a 30 and P = 0. 312 x 10-3 seconds.

The response curves shown in Figure 3. 1 for both two-element models

clearly indicate that a four-element model is needed to obtain sufficient accuracy

for times of the order of the pressure rise time. 0.01 seconds. However. it It
seen that the four-element response deviates strongly from the exact solution after

0. 1 seconds; estimation of strains at times beyond this value will probably require

the use of a model with additional elements.

Strain response to the unit pressure step can be used to calculate the

response 41 (t) to an arbitrary pressure loading pi(t) by using the Duhamel integral

"d(tVU(U)

in which the pressure is assurned to vanish for t < 0. The strain follows from

equation (3. Z. 9)

-1= 25 'fIO'4(t) (3. Z.ZZ)

We will now specialize (3. 2. 21) to the ramp type pulse illustrated in

Figure 3. Z with a derivative defined mathematically as

dP (3. 2.23)

",.dP . . . ..... h-..t. . . " ..

0 t
,it t 8

at.
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Using the pressure derivative given by (3.2. 23), 1P (t) becomes

Using

qj (.t) o WCM-10)111t<- t, 4.-t

•- t-%

L-.ttu=€=d=&- ()Oc=ua •,t.t<tvt

The response for the three different models, obtained by substituting (3.2. 14),

(3. 2. 19) and (3. 2. 20) into (3. 2.24) is shown in Figure 3. Z.

It will be recalled that in the spectral analysis we assumed that most of the

strain due to one entire pulse would relax out by the time t a 1t 1 = '1t 12 seconds.

It is seen from the four-element curve that this assumption is valid since only

about 100/o of the maximurn value remains at t a It."

It is important to recognize that the model parameters used in the foregoing

analysis are functions of both temperature and time scale of the pressure pulse.

"More precisely, the parameters depend on where the frequency band of interest lies

"on the master curve of dynamic data. In order to make a complete design study for

various temperatures and pressure rise times, it is necessary to first determine ,.

"the model parameters as a function of position of this band. Then for each specified

preasure rise time and temperature, the appropriate frequency band must be found.

'However, with each model the grain and case geometry can be varied independently

of the model parameters. This assumes, of cou se, that the strain occuring with

the various geometries relaxes out sufficiently rapid in order that the spectral

analysis is valid..

3.2.2 Direct incorporation of complex compliance data using Fourier transforKM-

step and ramp pressure.

The transfer function +(p) in (3. 2. 10) generally has to be represented by an

infinite element model in order to fit experimental data over the entire time scale.

.. -
- - - - ---- -. ." . .i) ~ i .? - :+ -+°: ++• ..+- " ,-:,, "• --++- + .+•- ' ::.+ -• +:u ..L +- :2 -_ •+i2 :-+



i the retardation spectrum L( ) were known, then

could be substituted into equation (3. 2. 10) and used to invert t(p). This procedure

will usually require contour integration in the complex plane which can be quite

laborious. However, application of the Fourier transform and inversion integral

enables the strain to be found without using model theory or complex integration,

wherein only the assumption of linear viscoelasticity Is required.

Therefore, as an alternate method of analysis, an exact solution to the

viscoelastic problem will be obtained by using experimental values for dynamic data

directly in the Fourier inversion integral. In view of the data existing or.ly ifr

graphical forn', it is necessary to use numerical integration. It turns out that it is

much easier to perform the numerical inversion if the pressure is a step function

rather than a pulse associated with a particular time scale. Thus, as before, we

will first determine the strain for a pressure step applied at t a 0, and then extend

the results to the ramp pressure by using (3. 2. 24). The Fourier transform of a

function f(t) is defined as

(W) e at(3.2.26)

with the inversion integral

:'& e(3.2.27)

Formally operating on linear differential equations with the transform is equivalent.

with zero initial conditions, to replacing the time derivative by iW and the pressure

si(t) by i(w); therefore we obtain the Fourier transformed strain from (3.2. 10)

by simply replacing p by it -

where the c.omplex admittance A(w) is defined as

A <w 4(t•j) "+ .3 .. --

A(4) -. (3.2.29)

However. *(iW ) is actually the nondimensional complcx compliance, 10*(W), defined

previously in Section 2.6.3

= K.. -'i (W - 7Ou.
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Substituting *(icai) a *'(w )+i'"(W) into A( u) and rearranging to form the real and

imaginary components, we find

A(w) =A,(w) -I Ax(w) (3.2.30)

where A,(Wl (,;f+ (V,'+%",e.S + 10o-s

(=, +(,V)s+ IS.S3.6'+ 5900

A 2("" 7 S.5 4 ,

") (4- (I* . I"53.6*'4+ 5900

S-It will be convenient to write A(Cw) in an alternative form

A(W) =A (,)l j-"" (3.2.31)

* where
:.: • I~~~A(WO1 "•/, (W) + Puw'zc)•

re. ,W A,(•w)

Both (3. 2. 30) and (3. 2. 31) are plotted in Figure 3. 3 by using values for .' and*"
taken directly from the master curves of the real and imaginary components of
complex compliance. Figure 2. 3Z.

We have defined Ti(w) as the transform of a unit step funiction which vanishes

for t < 0 and equals unity for t > 0. However, the transform cannot be found

directly since the transform of the step from (3. 2. 26) is

which does not converge to a definite limit. Consequently, we must consider a

modified step function
S9•f.:) 0 ; -tG0:

(3.2.32)
S" (t) -

and let "-O after the final form of the inversion integral is determined. It is

shown in the following that r can be taken identically as zero in the portion of the

inversion integral requiring numeral integration, while the'portion in which we

cannot initially take it as zero can be evaluated analytically. The transform of
(3. Z. 3Z) is

--,,= e - , (3.2.33)

t 3

[-

. .'. ---'
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From (3. 2. 27) and (3. 2. 33)o the normalized strain due to a unit pressure step is
written formally as

(3. Z. 34)

'+A1 -W~~ I.. *r t

In order to numerically integrate (3. 2. 34), it must first be written as a

real integral. It is convenient to use form (3. 2. 31) for A(W) so that

A()e Ale- '-- IAIjcos(wt-G)+Lsin(wt--")•j (3.2.35)

Substituting (3. 2. 35) into (3. Z. 34) and writing

--tw -+ uP
we find

S%(t) -- - - s(Qt-e)+i.j sin (wt-&5]t (3.2.36)

of 2To egtvG hds been definud as
C "- T A n A E .

in which A 2 and A I are know-n only for WO > 0. However, behavior of eE for negat~ive

W0 can be determined from model theory. Reference to the most general models
given in Figure 2. 15 show that the real component of complex compliance is even.

in W . and the imaginary component is odd in W0 • Thus, from (3. 2. 30) it is clear

that I AI is an even function while Ce is odd. Using .his fact, we can write (3. 2. 36)
as two real integrals with lirmits from 0 to co: ' '

•(c)-iLirm '-IA| w-sin(WQt- C-" du

(3.2.37)
S(. '" A j c S ( Wt - . Q . w M 1 + 1

The first integral, defined as 11, converges uniformly for all T and hence we can

set '( a 0 under the integral sign. It is seen that if we set " a 0 in the second

integral 12. it diverges due to the 1/ W term in the integrand and the lower limit

being zero. H4owever, a change of variable will allow the limit to be taken. Letting

W --b YA" in I2. we obtain



----- ,-T c-r . --.-..-- - --G -T~ 11 (3.2.38)- -

Since I is uniformly convergezat in r" we may act if a 0 under the integral sign,

thus:
t U"~~~C ft. • A•l

z (3.2.39)

in which we have used the fact that 6(o) a 0. The refore •(,) in (3.2. 37) is given by

)Sin Wt- 6) dw + i!1Aox (3.2.40)

4(t) can now be found by numerical integration. The method employed for the

problem in this report was to use Simpson's rule for approximately the first two

cycles of sin ( W t- - ), and then construct analytical approximations for the

remaining range of integration in which the contribution to Q(t) was relatively small.

The result is plotted on log-log paper in Figure 3. 4, and for three different time

scales in Figure 3. 1 indicated as the "exact" response. The strain can be approxi-

mated by a few straight lines or. log-log paper so that it has a power law form as

shown in Figure 3.4.

A very useful approximate relation exists between the real part of the

dAmittance AI and the strain t(t). Examination shows that t (0.51w ) A

"Thus, by taking values of A1 (w ) from Figure 3. 3 and plotting these values against

t a 0. 5/ri , a good approximation to the exact normalized strain is obtained as

shown in Figure 3. 4. It is expected that thus "rule" will hold as long as the complex

admittance has the form shown in Figure 3. 3; however, other examples should be

examined in order to determine the generality of the rule.

The solution t(t) was obtained for a particular geom-netry in which certain

dimensions were assumed. If it is decired to study the responses as a function of

"dimensional changes, in principle, the complete Fourier inversion must be carried

out with each set of dimensions. However, if the rule t( dL/r ) a A,(w) is found

to ho'd for.one set of dimensions, the strain can be computed direc:tly from this
when other sets are ,used. In the problem just solved oc a 0. 5; however, it may be

somewhat different for various materials and may change significantly if radical

changes in dimensions-are made. - In a design study involving dimensional chatVt:

"limiting values should be used to check the value for at

!*: : . :." .. . .. .. . . " ... . . ' - . . . . . . . . . . .
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The analytical approximations to Qlt), given in Figure 3.4, were substituted

directly into equations (3. 2. Z4) in order to calculate the normalized strain response

for the pressure pulse shown in Figure 3. 2. The elastic limit cases for the strain

are shown as well as the actual viscoelastic response. The limit cases correspond

to the hypothetical situations in which the grain responds with glassy compliance

(the smallest possible compliance which is tht limiting value at high frequency) and
the rubbery or equilibrium compliance (the largest possible compliance which is the

limiting value at low frequencies). It is clearl y seen that the actual strain history

is considerably different from what an elastic limit analysis would indicate.

It is important to recognize that it was not necessary to specify any pressure

time scale or temperature in obtaining the fundamental solution t(t). This was

necessary with the finite-element model analysis and consequently the solutions were

valid only for a specified time scale and temperature. Since the solutfon just

obtained is known for all time (the very short time portion is not shown in Figure 3.4.

however, it can be found from the inversion integral), it can be used to draw a

master response curve which is valid as long as the material's temperature is

constant in time. That is, the time-temperature superposition principle discussed

in the Section 2.5 can be applied by plotting g as a function of (t/aT). it should be

recalled that a small approximation is made in doing this since the linear dependence

of compliance on temperature has been neglected. If this dependency is considered,

then the admittanc. plotted against reduced frequency ( w aT) will change slightly

with temperature. However, the present inaccuracy af propellant data does not

warrant such a correction.

The master curve for t(t/aT) can be used to make a parametric siudy of

response as a function of temperature and pressure rise time for each set of

dimensions assigned to the grain-case geometry. In view of the empirical relation

found between the real part of the admittance A1 and ý, which becomes

.. (t/aT) 4( Uw aT) i A,( W aT) in terms of reduced variables, the response •(t/aT)

can be found quite readily as a function dimensions if further examination verifies

"the relation for other examples. Such a set of master curves would allow a complete

design study to be made. This conclusion can be contrasted with that made for the

solution with finite-element models. It will be recalled that with these simple models

each solution could be easily used in a parametric study in which dimensions were

changed, and a set of these solutions i•i-e needed to study the effect of temperature

and pressure pulse variations. Also, if it is desired to take erosion of the inner

: o~
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boundary into account, the Fourier integral method cannot be used; however, one
can use a method such as suggested by Lee and Radok(3" 3) in which finite elerment
models are employed. Consequently, we cannot state, in general, that one method

is better than the other since the most appropriate one will be deter.nined by the

particular problem at hand.

3.2. 3 Extension of the solutions to pressurized cylinders with internal star-

shaped perforations.

Inasmuch as the stress and displacement solutions presented in this report

apply only to circularly perforated cylinders, it is useful to extend these solutions

to include the more common star configurations (Figure 3. 5). An approximate

method based upon elastic concentration factors will be discussed for both elastic

and viscoelastic grains. In a paper by Ordahl and Williams (3 4) this method is

applied to elastic grains (with and without cases) and several design curves are

presented'that give preliminary values of stress concentration factorsO.

The concentration factor K has been defined as

09 -. (3.2.41)

where a, a: a radial and tangential (hoop) principal stresses,
respectively, in a star perforated grain,

0',., Cre a radial and tangential principal stresses re-
spectively, in a grain with a circular port.

The stresses 0 "r and TOO , for either plane stress or the condition of constant

strain e5, are given in Section 3.3.2 as

+ ~(3. 2.42)

- +

* The data was preliminary in the sense that only a limited amount of experimental
values was used and that subsequent checks indicate about W01/o unconservative
results. It is understood that other workers are presently engaged in refining the
earlier data.



Also

Or O 2(3.2.43)

where Pi a internal pressure
p' a external pressure (for a case-bonded grain this is

the pressure between the case and grain)
a a inside radius of circular grain. and "b a outside radius of circular grain.

It is seen that 0 0r - (Yo) depends only on the pressure difference {ps-pi);
so that in order for K to be independent of loading, ( Or- (0) must also be
proportional to (p* -pi). This will now be shown. Since linear behavior is assumed,

(yr and o are generally written as

": = •• (3.2.44)

in which p. 0- P3. and P4 are geometrical factors pertaining to a particular
configuration and, in general, are space dependent. It should be noted that these
factors are independent of material properties since the stresses in (3. 2. 44) apply
to a two dimensional problem with all stress boundary conditions. The stress
difference is

GO- a= ISP aP 4 P(.2. 45)

A relationship between the Ai, which must hold for all pressures, can be found by
considering the limit case of pi a p' a p. When pi a pI a p. a cylinder of any
arbitrary cross-seciion is in a state of uniform hydrostatic pressure so that
Ur - a: .F -p, and therefore from (3.2.45) the pi must satisfy

A- 00-~4  (3.-2.46)

Substitution of (3. 2. 46) into (3. 2. 45) yields

s.= C (3.2.47)

which was to be shown.
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The rxmaximuni stresses and strains occur at the star points, indicated in

Figure 3. S, and for this reason the necessary relations will he presented for

calculating stress s and strains at this location only. It is clear that because of

symmetry there is no shear stress acting along radial lines drawn through the star

points which means the stresses at the star points, denoted as tj p and (Y "

are principlc stresses.

At the star point (r a a), KrKi (this corresponds to the notation of

reference 3.4 and or -p .. Using this notation, (I is found from (3.2.41)
and (3. 2. 43) evaluated at r a a:

It is apparent from this result that only when pi a 0 can Ki be interpreted as the

ratio of 0:p to (' . It should be emphasized that the above results are independert

of material properties if pi and p' are known; thus, both viscoelastic and eastic

stresses can be found using (3. 2.48) with the values of Ki given in reference 3.4.

However, with a case-bonded grain, pt (assumed uniform) is the pressure between

case and grain so that it is related to p. through geometrical factors and materi1l

properties. This necessitates the use of an approximation in which shear stresses

"at r ab are neglected, and pl is assumed to be the same for both the star and
circular configurations if the radius (a) of the circular port is made equal to the

radius drawn to the star point. It is evident that this approximation improves as the

web fraction b-alb increases.
Elastic solutions for pt are given in Section 3. 3. 2for several pressure

problems. With a viscoelastic grain it is necessary to solve a differential equation

that arises when elastic constants in the equation for p' are replaced by appropriate

differential operators. It may be noted that, in general, pi and p' have the same

time dependence only if the grain is elastic.

The radial, tangential, and axial strains at the star points, denoted as

er:P , csp, and <P respectively, are found by substituting or Ps -Pp and

- (3. 2.48) into the stress-strain equations

e'%J4-(ida.+ 9r,)j

+ --- (3.2.49)

0 s~=4ip sr_(-, a')

0re



Two important cases can be distinguished: First. for plane stress ( C a 0)

An nteestnglimit case results for incompressible materials (' ej =). The first

term appearing in the brackets in (3. 2. 51) will then vanish leaving for plane st~rain

w2

2 (3.2.50)

Viscoelastic star point straiFo are obtained from the applicable set of

preceding equations in the usual manner by first replacing E and •.i by viscoelastic

operators and then inverting to obtain the time dependence. -

3.3 A Collection of Useful Formulas.

3.3.1I Range oi validity of linear elastic analysis ..

At the end of Sec3ion Z. 5, certain conditions were alluded to, under which the

propellant could be treated as essentially elastic. The answer to this question was

deferred until this section in order to provide directly an application of the visco-

elastic theory discussed under Sections b. 4, 2.5E and 2. 6. This was done in

Sections 3. 1 and 3.2, where an ignition type of problem was discussed. This problem

is peculiar in the sense that in the first few microseconds after rapidly applied load-

ing at ambient temperature, the propellant changes its mechanical response from

glassy to rubbery. In other applicaticns of load at room temperature, we are not
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concerned with response in the first few microseconds, but rather with longtime

behavior, such as slump. Or equivalently, if the load is applied at extremely low

temperatures, we are only concerned with short-time behavior. In both these cases,

ihe propellant behaves essentially elastic--rubbery at ambient, or glassy at low

temperatures. Thus, it is possible in a large number of cases to assume linear

elastic behavior, and thereby use the following collection of elastic solutions directly

in an engineering analysis.

Before presenting these formulas, it is important to establish ranges of

validity. Thus, at low temperatures it is necessary to know the limit of duration

beyond which creep effects enter the picture. Conversely, at ambient temperatures,

it is necessary to know the minimum duration within which relaxation effects are

still important.

In order to investigate this point, we must first choose a tolerance lmit

within which the reduced modulus is to be considered elastic. Thus, for the case

of short times, if the tolerance limit is denoted by •g, and we consider the tensile

modulus, for example, then

IM.- WeW1  (3.3.1)

This criterion guarantees that the propellant acts perfectly elastic, glassy and

brittle during the time scale of the experiment at a given temperature. In order to

evaluate this time scale, we use the modified power law distribution, Section 2. 4. 3,

and set

-< .1-n t (3.3.2)

so that

< K(.,( - (3.3.3)

Similarly. for long times, with the tolerance limit again denoted by •e

we have

SEC - < (3.3.4)

This criterion guarantees that the propellant acts perfectly elastic and rubbery

within the time scale of the experiment at a given temperature. In order to evaluate

thi. time scale, we set

t> 1+ so Ttat (3.3.S)

*iyi tiw]
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By way of comparison. we have the following tabulation for nm a, W1 0-l3

TABLE 3.1

Material Td ...F Kj t W 1#6 *,;, *Sep

unfilled polyure- -80 2 2 439s 220. -2.4%10 ..- uo -AlO4
thane binder

one kind of poly- 0 a 723,15w10' ta " 1-a -S'10 -4xle

It is apparent that, in the case of a propellant with a high brittle or distinctive

temperature, reldgxation eflects are negligible at -80°F, while relaxation is

completed with 9 sec. at +80°F. On the other hand, in the case of an unfilled rubber

or a propellant with a brittle temperature down around -80 0 F, relaxation effects
0 0are very important down at -80 F, and have completely relaxed out at +80 F.

One can now interpret this extent of relaxation in termt of the mechanical

model. For convenience, we use a Wiechert model characterized by a modified

power law distribution and ask what the corresponding relaxation times are, below

which all dashpots have already relaxed, and above which no dashpots have had timie

to relax at a given time and temperature. Thus, for the latter case, we set

J-t (3.3.7)

-. , This is equivalent to statement that, at time t and temperature K(T). all dashpots

whose relaxation times are less than rmin have already relaxed out, in the course

of which the modulus has only been reduced by the tolerance factor (1- 9 ). We
replace (t + K)/It by %r to obtain

_____ ____ e 'v dir

which yields

I-. _ _ -: (3.3.9)

- -
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so that
"-• wn. (3.3.10) 7

or ~ TW.= ~k t+K~r) =ic4(t~I~ (3.3.1lis 
It 

O.1

Similarly, in order to determine the relaxation time below which all dasbpots
have already relaxed at given time and temperature, we set

. =z (3.3.1Z)

This is equivalent to the statement that, at time and temperature K(T). all dashpots

" whose rlaxation times are greater than 2'max have not yet relaxed out, leaving a
tolerance factor • of the original modulus. We again replace (t + K)I/ by Vr to

obtain6 t r'

Lt + rMn =% (3.3.13)

'"_______- __ (3.3.14)

"L Cam.1(3.3.1S)

(3.3.16)

Equations (3. 3. 11) and (3. 3. 16) show very clearly the cut-off relaxation times

follow the time scale of the experiment; the magnification factors 4 and 115. S
* •-'" respectively depend only on the tolerance factor 6 , and the log-log slope.

3. 3. 2 Stress-strain fields In cylinders.

The following pages summarize first the important equations in cylindrical

coordinates which define the stress-strain field in both infinite and finite cylinders

S",under various types of loadings. The general cylindrical equations are listed,

followed by those restricted to axL ' symmetry for both three and two-dimensional

problems. Following this, sitrple Padings au.h as simple tension, internal

pressurization and torsion are applied to free and elastically cased hollow tubes.

Some relations for solid cylinders are also included. Finally. thermoelastic

equation: and simple thermal stress fields are presented.
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Plane Stress and Two Dimensional Plane Strain

Pressure-Solid Cylinder-with Case-Two Dimensional P-i. 3 129
plane Stress

Pressure-Solid Cylinder-with Case-Two Dimensional P-4, 5 131

Plane Strain

Pressure-Hollow Cylinder-External Pressure-No Case- P-6 133
Two Dimensional Plane Stress and Two Dimensional
Plane Strain

Pressure-Hollow Cylinder-Internal Pressure-No Case- P-7 134
Two Dimensional Plane Stress and Two Dim.ensional
Plane Strain

Pressure-Hollow Cylinder-External Pressure-with Case- P-8. 9 135
Two Dimensional Plane Stress

Pressure-Hollow Cylinder-External Pressure-with Case- p-0, iI 137
Two Dimensional Plane Strain

Pressure-Hollow Cylinder -Internal Pressure-with Case- p-12, 13 139
Two Dimensional Plane Stress

Pressure-Hollow Cylinder -Internal Pressure-with Case- p-14. 15 141
Two Dimensional Plane Strain

Pressure-Hollow Cylinder-Internal Pressure-with Case- P-16, 17, 18 143
Ends Bonded

Tensile Loading:

Tension-Solid or Hollow Cylinder-No Case T-I 146
Tension-Solid or Hollow Cylinder-with Case-Bonded- T-2, 3 147

Cylinder and Case in Tension-Uniform Stress

Tension-Solid or Hollow Cylinder-with Case-Bonded- T-4. 5 149
Cylinder and Case in Tension-Uniform Strain

Tension-Solid or Hollow Cylinder-with Case-Bonded- T-6 151
Case in Tension or Cylinder in Tension
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Formulas .Ee

Torsile Loading:

Torsion Equations-St. Venant t-I 152

Torsion Equations-Second Order t-2 IS3

Toesion-Solid or Hollow Cylinder-No Cas" t-3 1IS#

Torsion-Solid or Hollow Cylinder-with Case-Cylinder t-4 1SS
and Case under Torsion

Torsion-Solid or Hollow Cylinder-with Case-Case under t-5 IS6
Torsion-Cylinder Unbonded

Torsion-Solid or Hollow Cylinder-with Case-Case under t-6 IS?
Torsion-Cylinder Bonded to Case

Torsion-Solid oz Hollow Cylinder-with Case-Cylinder t-? 158
under Torsion-Unbonded

Gravity !oadi%:

Gravity-Solid or Hollow Cylinder-with Case-Pure Shear G-1 159

Thermal Loadins:

Thermoelastic ?Squations AT-I 160
Temperature-S)iid or Hollow Cylinder-No Case-Plane £T-Z 161

li'." • Stress .

Temperature-Solid or Hollow Cylinder-No Case-Plane AT-3 162
Strain

Temperature-Solid or Hollow Cylinder-with Case-Plane AT-4s 5 163
Stress

Temperature-Solid or Hollow Cylinder-with Case-Plane AT-60 ? 165
Strain

Temperature-Uniform-Hollow Cylinder-with Case and AT-8. 9 167
Ends Bonded

Temptrature-Steady Flow-Plane Stress-No Case AT-10 169

Temp-rature-Steady Flow-Plane Strain-No Case AT-11 170

_•7
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DEFINITIONS OF SYMBOLS AND TERMS

a - inside radius of cylindrical propell.nt grain

b - outside radius of cylindrical propellant grain

c - outside radius of case, as subscript for case properties

E - Young's modulus

e - relative volume change- AVIV a Er * CG- +.GE

g - acceleration due to gravilty 32. 17 fps

h - case thickness 4e, b

I a - natural logarithm, base e 2.71

p - pressure, psi.

r - radial coordinate

R - body force in radial direction, as for example.
centrifugal force

T - temperature change from refe-'.- - or initial temperature

u - radial displacement

v - tangential displacement

w - axial displacement

z - axial coordinate

Z - body force in axial direction, e.g.. gravity

S- coefficient of therm al expansion -

r - shear strain

V - del operator for differentiation

c - case to propellant modulus rath a ZbhEI [Cb•-za) E]
- normal strain

' - tangential coordinate of the cylindrical system

* - body force in %angential direction

JA - shear modulus of elasticity w E/ [2(1 + 4).

I. - Lame constant a iE/((1 [+ 1 )(1 - 21)])

5 - Poisson's ratio

p - specific density - lbs/in3

0" - normal stress

- shear stress (.

4' - stress function

- . ..- x* "-'-. -' -. -[



ioi

Bonded - adhesion of propellant to case

End effects - effects due to finite length cylinders: a mo or a =J.

Necking effect - shrinking of cross-section due to elongation

plane stress - no stress in axial direction: 0.' a•

Plane strain - no sattin (displacement) in axial direction: %s o.

Second order - a smaller quantity which 12 proportional to square
of the varilbll

-most elastc solutions are first order linear theory
emall strains - strains of the order of a few percent for linear theory

St. Venart - (a) localized effects at boundaries die out as
boundaries are remote

- (b) simple first order torsion in which ends
rotate as solid disks

Steady flow - temperature distribution constant with time

Subscript ) - used to indicate two solutions simultaneously -
upper sign option with upper subscript, ,c.

7.|
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3. 3. 3 Composite, hollow cylinder of K layers under internal pressure.

Inasmuch as it is often of interest to analyze a multi-layered concentric

geometry and hence be able to study the inclusion of a liner between the grain

and case, or a radial incrementally cast grain, some elastiz analyses pertaining

to this case are summarized(' 3) by Pister.

Consider the nth layer of a long right circular cylinder where we let r n

denote irner radius, pn pressure at rn, rn + I denote outer radius, pn+ I pressure

at r + 1.

For plane Ltr-ts the general solution st the displacement equilibrium equation is

u,(r) A,•- • •{(3. 3.17)

Wp re V. -r.

- ..2 1 .. _____._-_.,3 (3.3.18)-. e~~~~~,,= -- '' -r.

The k-l continuity conditions at Lhe internal boundries together with the stress - -

boundary cond'tions at the external boundaries are sufficient to determine the

constants An, B for each cylinder in a given case (or alternatively, the internalnn
boundary pressures). The continuity conditions are of the type

""U", U,. at r=r,... , n' 1, 2, .... ,'- (3.3.19)

= Combining equations (3. 3. 17), (3. 3. 18) and cubstituting in (3. 3. 19) leads to the result:

L ,'P.. ',,P .==o W •= I=, ... ,2,--1 (3.3.20)

-V - -
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where

- " - (- -- ")

+~i~. SO.\Ir. + ~ (3. 3.21)

To determine stresses and/or displacements in the nth layer, obtain p np +"

from the solution of equation (3. 3.20) and use in conventio. 'al cylinder equations,

setting p, a p. and po a Pn + 1. For plane strain replace En by En41- V n and

Example: Internal pressure in three-layer cylinder

External body conditions.

Setting n a 1, 2 in equations (3. 3. 20) gives (using above conditions)

SLs .4 HA&-+ MOPPS 0

whose solution is

Ig. -I.MO. LLP"
"ta4. --t* iW Ht t - La W"

La Me N can be evaluated from equation (3.3.21)

Pressures P1 . p2 . p 3 can be used in equations given in Section 3.3.2

for the determination of stresses and displacements in th- layers of the cylinder. In
"'" view of the cumbersome algebra involved, results will be given explicitly only for

the instance in which the outer two layers are thin.

Thin Liner and Thin Case

a

p" = interface prer.ure at rmb k
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Plane Strain "1•'=. . . 2 V; 0,- V,)

h,:r,:. • \+v%•.l ~

i StressesI in cylinder, same as formulas P- 1, P-14 in Section 3.3.Z

using above value of ;

Stress in case: Stress in liner:

Discussion of Results:- As can be seen from the expression for p on the
previous page, *'-- presence of the liner does not affect the stress distribution in

the grain, since the dominating term hcE C/bE causes the fraction (X- 1)/[.,.]
to vanish for typical geometry and materials. Accordingly, the liner is of no

significance pressurewise, as long as the ratio h E /bE remains large, as it wil
c c

for metal cases. In the event that non-metal cases with significantly lower moduli

are used, or if grain stiffness were increased, the liner could become important
in determining stress distribution due to pressure.

3. 3.4 Temperature distributions in cylinders.

The thermal stress solutions given in the previous Section 3. 3. Z.require
knowledge of the temperature distributions. Temperature change. in propel'Rnts

are due almost exclusively to heat conduction and the (exothermn.- ,r endothermic)
reactions during curing. Tempera*:-- change due only to straining is inconsequential,

whereas radiation dur'ng long space ,ights may be more detrimental to the chemical

composition oi the propellant than in heating. At any rate, we shall first consider
temperature distributions from the heat conductior. equations reviewed in this section.

While temperature distributions are generally transient in nature, the stresses
and strains can often be calculated assuming elastic response. This is the case
when the mean relaxation time of the material is appreciably larger or smaller

Z -1than the characteristic time for thermal diff iisic , ( { ) -K0 (see Section 3. 4. 5).

Particular men:ion should also be made of the Rohm and Haas articles(3 5)
and those of Nichols et al (3.6, 3.7) dealing with thermal conditions during

casting and curing.
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3.4 Discussion of Other Design Applications

While it is obviously impossible to discuss analysis techniques for all the

various design configurations which might be proposed for so•lid rocket grains, it

ijs pertinent, nevertheless, to discuss some of the factors which will be encountered

in design applications. As intimated earlier the pressure or simulated ignition

loading of a thick walled hollow cylinder, even as extended to star grains through

the use of concentration factors is at best only an approximation to the actual

problem, whether treated viscoelastically or elastically. It does, however. serve

the very useful purpose of conditioning the analyst's intuition which then permits

him to make judicious extrapolations. In order to further develop this background.

it is therefore advisable to investigate other cases of an idealized nature.

3.4. 1 Spherical grains

The simplest geometric extension of the hollow cylinder is the hollow sphere.

Here again it is possible to obtain some fairly useful results, although the basic

formulas are developed for the complete shell, i. e. no port is considered for the

exhaust to escape. Such discontinuity effects would have to be superimposed upon

the basic stress distribution later. If 4he inside and outside radii and pressure of

the hollow sphere are a and b , and pi and po respectively, the following relations

have been deduced (3. 10,

Pressure loading. - For an uncased elastic sphere, one has

S~If there is a thin reinforcing case of wal. .hickness h and modulus Ec and P:oisson's

ratio '2/c andl the sphere is subjected to uniform internal presbure, the pressure
at the propellant case interface, •. is

"P•- (• 2=v 2••+ •'• ( -7T5•(-) t 'I: (3. 4.4Z)
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which for a rigid case, Eb/E h <- 1, reduces for an incompressible material to

C

as it should. These formulas can be compared with the similar ones for the hollow

cylinder and certain associations can be drawn, particularly the occurrence of the

X factor instead of X

Thermal loading. - Consider the situation of uniform temparature rise, AT.
of the entire case bonded assembly. The equivalent interface pressure on the grain.

allowing for a thin'liner with properties denoted by primes, is
(o4'o) -- •.

" i-ow 1+

".�- 'For a mechanically rigid case (E 2 -- co).

_ ( ~(3./4.7) .'.

with an associated strain at the inside radius

= SAT (3.4.8)
2 ( - 2 V) 1N-+( 1+ -)

If one has the case of steady heat flow through the grain, such that the ca'e

is at a temperature TO and the inside at a temperature Ti, such that the temperature
distribution is

-- (T) -- "T. (3.4.9)

there results, at the interface, a pressure of
•~~ (3.4.101•" + V -

S C<C(-K.--r.): (I-•') [2 (1-2v) ,,"-A+1-](.4 O

3.4.2 Spherical-cylindrical junctions.

One problem which has continually caused difficulty is the stress field where
the cylinder and head end joins. The actual problem is tremendously complicated

by the star intersections; consequently at Lhc prczcnt time one can only hope to

estimate the order of magnitude of the stresses by a knowledge of the cylinder and

0•_'
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spherical solutions independently, a-d the gross moment across the wall estimated

from thin shell theory. (The pressure stress concentration factors for the cylindrical
grain are expected to be conservative if applied to spherical sections.)

Durelli(. 1 1  however. has recently obtained some photoelastic data for this

combined geometry with web fractions of the order of fifty percent which should

provide at least one check point for engineering estimates.

Outside of photoelastic tests, it does not seem possible, at this time, to

obtain very accurate estimates of stresses ir. this geometry when it is further

complicated '5y star cut outs and igniter ports. The analyst will have to continue

relying upon indirect inferences of the stress field, including the proper use of

concentration factors for related geometries as developed by Neuber(3. 12t and

Peterson(3 13)

3.4. 3 Environmental and handling loads.

The usual engineering consideration r. 'e given to handling and shipping

loads, whose assessment is frequently compli?ý -J by potential thin shell instability

of the assembly. Another problem of concern is the effect of vibration upon the

grain and the grain-li:'er bond du-.ing shipping. Some exploratory work along these

lines has been reported by Baltrukoni s(3 14)

In the sense that gravity force is environmental loading, one could consider

the problem of slump during storage within this category. Two basic problems of
interest arise when the gravity vector is vertical and horizontal. The first of these

has been treated by Knauss (3,15) which will be discussed subsequently in connection
with failure criteria, and the second has recently been analyzed by Lianis(3 16)

It is felt that sufficient initial information is now available to demonstrate the methods

of analysis which should be employed, as well as providing some preliminary design

data. It should also be mentioned that the slump problem during storage is closely

relateO, from the analysis standpoint, to the acceleration inertia problem. This

aspect of the problem has also been included by Knauss, whose solution permits

estimates of grain deformation when the base of the grain is bonded or free f.'om

the base support. His work also comments upon the use of gelatin models for

visualizing the state of deformation.

0D_ .~_____________ _______
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3.4.4 Buckling stability of motors

One other problem associated with grain slumping, which might be mentioned,

is that due to the stabilization of the shell by the low modulus propellant. It may be

noted that the bonding restraint at the case wall may lead to a different mechanism

of buckling than for simple internal prespare in the thin shell due to the interface

shear. As might be expected, the buckling strength of the shell is increased. In

one investigation, Goree and Nash(3, 17) found the buckling stress in axial com-

pression to be increased from 5 to 65 percent with increase of R/t ratio (R a shell

radius, t a thickness) from . 333 to . 667. The modulus ratio was of the order of
510 . In certain design applications therefore, the 'esigner may be in a position to

take advantage of the increased rigidity.

3.4.5 Thermal loadings

The problem of thermal cycling v- one of the most difficult of those facing

the analyst. It is important to review the kinds of problems which can be solved

in a relatively straightforward manner, and then discuss those which are nearly

intractable. There are two problems for which present theory is adequate and

useful information can be deduced.

Steady-state approximation. - V•e first of these pertains to a grain assembly

whose temperature is very slowly changed. In this case the temperature distribution

is known, namely AT a constant, and any mechanical stresses arise solely from the

differences in the coefficients of thermal expansion of the component materials. In

the special case of a long tubular grain, this loading is equivalent to a uniformly

distributed interface pressure (Section 3. 3. 2, formula AT-?)

and is thus reducible to a pressure loading for which analyses and concentration

"factors are available.1
3 . 4)

The second problem is that of a steady-state temperature distribution such

as imposed by constant temperatures, To and Ti on the outside and inside re-

spectively . Thus, whereas the former temperature distribution was constant in

both the time and space dimensions, this latter one corresponds to one which is

constant only in time. The interaction of temperature and mechanical properties

is thus confined to allowing, for example, E a E (T(r, e)j which requires
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essentially that the governing differential equations rn' w include cocfficients which

become space dependent, but neverthelesi are still linear. Such analyses have

been conducted in the past, particularly in connection with gun barr,-l design;

contributions have, for example, been made by Hilton' 3 18). Furthermore, the

time independent feature implies an elastic stress-strain law. Hence this problem

also can be solved in a reasonably accurae and practical mariner, and previously

obtained concentration factors(3" 19) may be used.

A rough idea of the magnitudes of strain and case. bonding stress can be

obtained through use of the steady state elastic solution for a tubular grain with

temperature independent properties. For a case bonded grain in plane strain

subjected to a temperature TO on the outside and Ti on the inside, the temperature

distribution is

f b,% (3.4.12)

The interface pressure at the case bonding, assuming an incompressible .

propellant is (Section 3. 3. 2, formula AT-7)0

where •c and a are the linear thermal expansion coefficients of the case ana

propellant respectively, mc the effective case rigidity Ech/ L2(l- V )(% 1) b)

X a b/a, and TR the temperature for zero strain, say the cure temperature.

Similarly the strain at the internal surface, tu: "ul in determining low temperature Z

operating limits is

3 ~T.-R) 3 ~ T2rf, 3 ~ ' j

which may be multiplied by the concer.'ration factor K tK for an internally slotted
(3.19)grain

*T:ie expressions for interface pressure and strain at the internal surface which
are gven on page 07 of reference 4.2 are in error; the above equations (3.4. 13)

0 and (3. 4. 14), should be used instead.
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If the inside and outside temperatures of a 50 percent web fraction grain

are the same, but AT°F below TR. one finds a tensile stress at the bond of the

order of 0Yr(b) - 10 at E/&- or approximately 50 psi per 100OF temperature drop.

Without allowing for a concentration factor, the internal tensile strain may be of

the order of 10 percenr per O0°F temperature drop. Thus, conditions at either

the bond or the internal surface may be significant upon cooling. Geckler(3.20)

has also observed that transient considerations upon heating from the lower temper-

atures lead to thermal stresses of sizeable magnitude near the star Foin'. which

ma7 also contribute to grain cracking. Also, Zwick13"21 11 has shoy'mn that when the

temperature of the shell is suddenly changed, elastic stresses are rnonotonic

functions of time, and hence the maximum stresses occur either initially or finally.

However, if and when this is true for a viscoelastic material rtquires further stidy.

General transient problem. - The general problem of thermal strain analysis

involves first the knowledge or determination of the transient temperature distribution.

As mentioned, Geckler(3 20) has charted certain transient data for hollow cylinders,

Nichols and Presson(3" 7) have dete'rmined the transient temperatures during curing

cycles including the heat sources due to the chemical energy of polymerization. In

this more general case, therefore, the temperature depends upon both space and

time; specifically, the dashpot viscosities and ice the stress-strain law changes

with time. It is this temperature dependence of the material properties which

causes the increased complexity since the governing differential equations then have

coefficients which are both space and time dependent. In addition, time dependent

strains may result from either of two diffusion type processes: transient temperature

variations or viscoelastic material behavior. Unfortunately. it is not clear a priori

that one effect will always dominate to the extent that analytical simplicity may be

achieved by always neglecting one with respect to the other; although some litnit,"

based upon th! validity of elastic apprm ýimttions, have been discussed in Section

3. 3. 1. The only complication which does not enter is that the characteristic

"burning rate of propellants usui.lly exceeds the thermal diffusion rate. so that wien

a pressurized grain is burning out, the temperature distribution in the unburned

propellant remains esse:,ti.lly unchanged and only the viscoelastic pressure stresses

need be calculated.

-Returning to the sensitivity of mechanical properties to temperature, it is

found that even if an assumption of linear viscoelastic behavior is valid, there is

in general no associated or equivalent elastic problem such as cxists in the tempera-

* ture independent problem. Morland and Lee hay. re, antly analyzed this
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situation, incorporating a time-temperature shift function. It provdea. the relation

between physical time and a dimensionless reduced time, tt; namely
(I du

du(3.4. 15a)

Note that when temperature is constant in time,

which corresponds to the notation in Section Z.5. Hence for materials following

this shift law, one would deduce thai the characteristic stress.strain, time-tempera-

ture dependent, law for linearly viscoelastic media could be written in the same

form as discussed in earlier sections except that the reduced time tO would be used

instead of t.

However, while the coefficients in the stress-strain law are constant using

the reduced time, the equilibrium and compatibility relations, in their usual linear

form, are a function cf the physical time t. It is when the stress-strain law Is

wzxtten in physical time, or alternately, the equilibrium law is written in reduced

time, preparatory to solving a particular analytical prob' •m, that complications

arise. To illtistrate the difficulties, consider a special case following from Morland

and Lee's formulation; an infinitely long hollow thick-walled cylinder, symmetrically

loaded. Furthermore assume that the propellant materiel is viscoelastic in shear

only, remaining elastic in bulk or dilatation response. The following equations

then apply.

Equilibrium: ."-I- Ors -arll (3.4.16)

Compatibility:r aeo Er- E.= o s - t (3.4.17)'. r

Stress-strain:

Dilatation- ~ kE+. 3 3d-mI(3. 4.18)

K a bulk modulus, constant

Shear- ~ a~~~[Ld~**(3.4.19)

an. bm = experimental material constants

Upon assuming for example a plane strain configuration which prescribes F_

and using the stress-strain law to express oT in terms of the remaining four

unknowns ar, 0* E r and *e, the above four equations are sufficient to

0
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determine the solution. usingof course t' a • du/K LTlu)] where the time
dependent temperature distilbution is presume S known from a previous solution of

the beat-conduction problem.

For analytical simplicity. Morland and Lee investigated the steady state

situation T = T(r) with an assumption of individual mechanical and thermal incom-

pressibility, i.e. er + ÷ + Er r 0 and al a 0 respectively. In this case and

for plane strain ( Ez = 0)P one had Er a- F and both strains were easily

determined in physical time using the compatibility equition, e. g. e8 U F(t)/rIa

The stresses were then investigated using

"ar,• + o- r-• - 0• (3. 4. 20a) .

-.- ()- T- t) -, 0, (n I + + (3. . 20b

for Kelvin and Maxwell models. The essential feature here is that the Laplace
transform technique could still be employed. if desired. to solve a set of partial

differential equations with variable, spacewise but not time-wise, coefficients.

With perhaps a more appropriate assumption for propellant materials.

which are to the first approximation mechanically incompreesible but with a finite

coefficient of thermal expansion, one might assume a Poissonss ratio of one half.

If further, a plane strain assumption ez a f (T-TR) is empliuyed, approxirmate

equations for this situation, including non-steady state temperature, can be deduced*

- 0 (3. 4. Zlal

+ 2 Kt.r-, Ce - ZC(.-r TS1 (3. 4. Zlc)

"* Actually the coefficient in the dilitation stress-strain law becomes 3K/(I+ v)
where v . in the Laplace transform representation, stands for a time dependent
operator ratio. On the other hand, V.- =I for propellants so this approximation is
introduced for simplicity in the equations to yield 2K, a constant by hypothesis
ignoring the fact that a consistent use of V a • would require K. elastically equal
to E/3(l-Z, ), to be infinite.
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where it is now observed that the strain analysis cannot be conveniently separated

frcm the stress analysis. As previously noted the last equation has const,-t

coeff"tients only in the associated time, t'. and if written in terms )f the physical

time becomes a partial differential equation with both spacewise and timewise

complicated coefficients. Aside from the curing problem, these are the type

equations which must be solved to study the thermal cycling problem.

While a numerical solution of these equations may be called for, it is in

order to inquire as to possible limit cases of practical interest. As mentioned

earlier, two diffusion type processes are involved, first the thermal diffusion

characterized by terms such as Te" * and second the viscoel.stic de-

formation responding to U-. so that a consideration of the typical

time constants TK(T) and (Ka4 )-I or their ratio - relaxation time to heating

time - becomes pertinent.

to

If a hollow tubular grain is at zero initial temperature, i. e. reference values

and the case at r a b is raised to a temperature T 0 while the internal temperature

at r z a remains at zero, the transient thermal distribution is (see Section 3. 3.4)

-T . 4d ) . ,(a w.)~ -j. a

where K is the diffusivity and a4n are the roots of

J.(ay.)Y.(ba)-- Y.kacx.)J.(bc.) =o (3.4. Z5)

Carslaw and Jaeger tabulate these roots. For a 50 percent web fraction, b/a = 2.

and l' = a oen M3.12, 6. 27. 9. 42 respectively for n a 1.2.3.
n
For example, if (T) is of order one. then choosing the lowest eiger.value of

the temperature distribution, oC'1 = 3.12, a characteristic propellant diffusivity

of 10-6 ft 2 /sec, and assuming medium sized grains, say, two foot diameter or

larger, one has approximately tR/tH =10-5"T. Considering that characteristic

relaxation times range in the order of seconds or less, one concludes that most of

tb viscoelastic deformation relaxes much faster than the temperature is changing,

unless the particular propellant relaxation spectrum is heavily weighted in the

longer times.



-186-, i'

It may be justifiable then to proceed upon the assumption that the temperature

distribution is quasi-steady. T = T(r,to). With this assumption, a Laplace transform

of the sh.tar stress strain equation with respect to physical time may be taken. and

an associated elastic problem--with space varying temperature dependent properties--

can be formulated, and in principle be inverted to give the desired result. This

type of analysis is similar to that proposed by Hilton' 3 " ?3), except a Fourier trans-

form was suggested in order to make use of the complex modulus representation.

By way of concluding this section, it may be said that if the characteristic

loading or diffusion times tH are large or small compared to the relaxation time

tR then thermoelastic analysis with or without space varying temperature dependence

may be applied with a reasonable expectation of success. If, however, these times

are of the same order, then one would attempt to introduce first a quasi-steady

temperature distribution and proceed with the viscoelastic analysis. On the other

"hand, in the vicinity of the transition region when tR- tH, a combined transient

viscoelastic an•lysis is necessary(3 Z4) At the present time only approximations

to this situation can be attempted pending further study and improvements in

appropriate analysis techniques.

.a -ý
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4. FAILURE ANALYSIS

4. 1 Common Types of Failure Criteria

It has been repeatedly emphasized in the previous sections that a complete

analysis of the structural behavior of a solid propellant rocket motor includes not

only a stress or strain analysis. but also a failure analysis. Whereas we have

previously aimed primarily at investigating methods of estimating the stresses or

strains in a viscoelastic propellant material due to prescribed applied loads, we

now propose to treat the companion problem of predicting the maximum imposed

loading at which either excessive deformation or fracture threshold is reached.

In facing this problem, there are several difficulties to be overcome*

some of which are beyond present capabilities. Basically. most present failure

data has been obtained using uniaxial specimens tested to failure at a constant

strain rate. It remains to be seen whether such data may be used in situations

where the strain varies signi cantly with t= me, as during firing of the rocket.

Aside from the correlation v. mnultiaxial and uniaxial stress fields, some sort of

strain rate weighting factor will probably have to be incorporated in order to as-

sociate failure at an arbitrarily varying strain rate with that at constant strain

rate. One such hypothesis will be proposed. Another important aspect, particu-

larly as it pertains, to fracture, is the implication of the analytical simplicity in-

troduced by the infinitesimal deformation assumption. Most fracture analysis,

even for rubbery viscoelastic media, is conducted neglecting squares of the strain

compared to the strain itself. It is expected that significant trends will be re-

* vealed satisfactorily, but more sophisticated analysis will be required before a

definite quantitative measure of this assumption can be obtained. Finally. it

should be recognized thatpractically speaking, rubbery materials are essentially

ellastic all the way to fracture, and hence an elactic or visco-elastic analysis. in-

cluding large strain effects if necessary, is appropriate without having to consider

plastic or visco-plastic effects.

4. 1. 1 Deforme.tion criteria

Turning .now to failure considerations, there are two basic structural engi-

neering criteria, deformation and fracture. By the way of example in solid pro-

pellant applicafons, they are exemplified by slump and grain cracking, respective-

ly. Generally, the first of these is tied in rather closely with ballistic perform-



ance and storage procedures, that is to say, a maximum permissible deformation

without fracture it more or less arbitrarily prescribed. If this is the case, it be-

comes a simpl matter to complete the analysis by finding the loading or timo

corresponding to that state when this deformation is reached by applying the visco-

elastic analysis techniques previously developed.

One illustration is the situation wherein a second-stage rocket grain may be

fired vertically =nd subjected to inertial loading for short periods, say, of the

order of minutes. On the other hand, the grain, perhaps for logistic reasons, may

be storee vertically for extended periodb. and in this condition also subjected to

vertical gravity forces but over a considerably longer time. Both of these situa-

tions require the prediction of time dependent deformations -- the first under n.j

gravity loading for short time, the second for one g loads over long time.

An elastic approximation for such a condition has been given by KnausJ 4 " 1)

wherein it is shown that the inward radial constriction of a thick-waUled case-

bonded cylindrical grain at the base depends upon the support conditions. If the "-

base is completely unsupported, the throat area does not choke at all, but takes up

"the general deformation pattern shown in tlie sketch. On the other hand, if the

base is rigidly supported, there will be a choking tendency as shown. Its magni-

tude, in the particular case where the web fraction was fifty percent, was found to

-.

be of the order

Aa'bn (4.1.1)

where Aa/a is the relative change in port radius, p the density (pci) of the pro-

pellant, and n the number of times gravity load. To examine the effect upon bal-

listic performance, one could compute the relative change in port area AAp/Ap

UK _.

Aý
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to be twice the above figure. The previous calculation is based upon an elastic

analysis, when E is the elastic modulus. One approximation to thv time dependent

deformation for incompressible materials can be obtainedt 4 2 by replacing E by

its viscoelastic equivalent, which for a three element model gives

where it may be easily checked that for long times E -. Ee, the rubbery modulus,

and for short times E -" E 1 the glassy modulus. Alternately one may approximate

the tensile creep compliance D (t) a e(t)I "o' using a form similar to that

derived for the relaxation modulus from a modified power law distribution function

(2. 4. 85), which is -.

D•, tl= + (De--t)[i+ K '!'(-. (r( (4.1.3)

which for long and short times checks the elastic and glassy compliances D. and

Dg respectively, and in the transition region, t -o-K* gives

consistent with the relaxation modulus value (2. 5. 4). In this case, one may use

(4. 1. 3) and write

&AP

From the experimental standpoint, it would also be approximately correct to use

uniaxial tensile strain creep data at constant stress as D (t) in (4. 1. 5) "

In any event, the relative amount of choking is seen to depend upon the

mechanical properses, including the characteristic relaxation time. If therefore

the maximum permissible blockage were specified as the design criterion, one
S"" could compute the time at which it would be exceeded for a given gravity load. A

reasonably large grain, for example, might have an upper bound of approximately

ten percent per g at room temperature.

Slump may also occur during environmental storage of a grain in the

horizontal position. This situation has recently been considered by Lianis{4 3)

and the results may be used in a similar fashion as those above to predict defor-

"- "mation configurations.

o. ,
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The analysis given is approximate, but is presented to make the point that

if a deformation criterion is imposed, it is merely necessary to refine the appropri-

ate deformation analysis to the accuracy desired for the predi:tion. As the procedure

is straightforward, although not necessarily simple in a given problem because the

* strain analysis itself is complicated, no additional remarks upon the deformation

criterion will be included at this time.

4. 1. 2 Fracture criteria

In contrast to deformation, the mechanics of fracture requires a fundamentally

different type of investigation. Fracture first occurs on the microscopic scale

where the medium, particularly for filled propellants, is non-continuous. Hence

the analysis techniques, based as they are upon the assumption of a macroscopic

continuum, are :not valid at the point of fracture. For this reason the problem of

fracture analysis is markedly more complicated inasmuch as it requires a knowledge

of molecular behavior not smoothed out by the macroscopic averaging process. On --

the other hand, it has proved possible to determine certain extremely useful gross

fracture characteristics, for example uniaxial tensile strength as a function of

strain rate and temperature. From the engineering standpoint, it is desirable to

extend, empirically if necessary, such limited information on special test samples

to more complex geometries such as a star grain.

The general requirement for such a correlation is by no means new, although -

a precise statement for viscoelastic materials has not been particularly emphasized.

Nadai14 , 4) enumerates, for example, several different fracture criteria, primarily

as used in the study of metals, and it is worth restating them here. Each criterion
defines some particular functional of the stress field or strain field, the value of

which is to be determined empirically, because molecular theories of strength are

not advanced to the point of calculating such limits theoretically. When the appropri-

ate functional is exceeded, the associated yield, rupture, or fracture takes place.

Seven such criteria are listed below:
a) the maximum principal stress

b) the maximum principal strain

c) the maximum principal stress difference (or shear stress)

d) the maximum principal straindifference (or shear strain)
e) the maximum total strain energy

f) the maximum distortional strain energy

g) the maximum conserved distortional strain energy

J
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Criteria (a) and (b) utilize the fact that the maximum stress (strain) at any

point in the materi.l is the largest of the three principal stresses (strains), Wr.

Iv' r3 (e1 * ek, e 3 ) at this point. In simple and biaxial'tensile fields, these fun€c-

tionai- are identical with the yield or ultimate stresses and strains for these

fields respectively.

Criteria (c) and (d) atem from the observation that many materials, par-

ticularly those which evince ductile fracture (sometimes known as shear fracture)

do so along a pair of planes or a cone lying in the direction of greatest shear.

The maximum shear stress has the value •. (6-1 - 4r3) and is obtained on a plane

inclined 450 to the direction of the principal normal stresses. This criterion is

not suitable for mathematical formulation since it is necessary to determine first

thc maximurm or minimum stresses (or strains).

An alternate criterion based on a mean value of the principal stress dif-

ferences was proposed by von Mises4". This takes the form

1 -(T. C - a -, (- (4.I.6)

and a- is termed the mean deviatoric stress. For both simple uniaxial tension

""ad biaxial tensionsr 0 is identical with the yield or fracture stress. For pure

shear on the other hand, the yield stress turns out to be -r0/'3.

The mean deviatoric stress (or strain) has not been listed as a separate
(4.6)criterion proposed by Huber and Hencky . They observe that

12 A

This mean deviatoric stress is also 3/fTtimes a quantity known as the octahedral
shear stress. The total strain energy listed under (e) was proposed by Baltrami

(4.7)and Haigh It does not prove satisfactory since there is no correlation be-

tween behavior in pure shear and in pure hydrostatic compression. The con-

served distortional strain energy refers to the -r.-.rgy stored in a viscoelastic

or plastic material, i.e. over and above what has been dissipated. The theory

of application of this criterion is still not in a satisfactory state.

The important point to note is ,that no universal fracture criterion has

been established, and that the success of a given fracture hypothesis depends

in large measure upon the material with which it is associated.

In the case of elastomers. in contrast to metals, it is necessary to extend
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the usual concept of brittle and ductile failure. Ductile fracture in metals is

characterized by irrecoverable distortion and permanent set, analogous to the

behavior of an uncrosslinked polymer which also evinces unlimited, unrecov-

erable flow. On the other hand crosslinked polymers, the type ordinarily em- - - -

ployed as propellant components, recover completely from straining almost all - -

the way to fracture even though the strain at failure may reach several hundred

percent compared to elastic brittle failure in metals of only a few percent. In

the remainder of this section therefore, we shall restrict the discussion to

crosslinked polymers, and shall use the term elastic fracture as the large strain

analog of small strain fracture customarily referred to as brittle. In either

case. however, the stress-strain relation is elastic, or potentially viscoelastic.

with the distinguishing feature being the strain magnitude at failure. With this

understanding therefore a propellant material might have a brittle fracture below

the glass temperature but an elastic fracture above it. It still remains however

to deduce which of the various criteria is appropriate for predicting the fracture.

Inasmuch as no exhaustive investigation cif fracture criteria for elastomers has

been reported to the authors' knowledge, alihough Rivlin and Thomas (4.8) have

proposed an important extension of the Griffith fracture criterion which will be

discussed later, it would appear that the proper approach is to examine test

data in conjunction with certain of the aforementiuned criteria, and inquire if

any of thern give reasonable correlation.

The following paragraphs therefore will present a summary and discussion

of some current and proposed tests and their correlation, after a restatement of

some of the germane characteristics of elastomqrs. Before continuing, it is

appropriate to define the terms elastomer and polymer as used in this text.

A polymer is a network of long molecular chains which may or may not

be tied together chemically. An important characteristic of all long chain struc-

tures is the glass% transition temperature T above which polymers behave rub-

berlike, and below which. glasslike. If the polymer chains are not tied together

chemically, the structure is termed a plastic--a brittle plastic belov. T and ag
rubbery plastic above T . The extent of the elastic deformation evinced priorg
to flow to ruptLre in the rubbery plastic is markedly a function of interchain

entanglement and therefore of chain stiffness or structure.

If on the other hand the polymer chains are tied together chemically.

the structure is termed an elastomer or rubber--a brittle rubber below T and
g

a rubbery rubber above T . The extent of the elastic. deformation evinced prior

_-g
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to rupture in a rubbery rubber is markedly a function of chain length between

crosslinks, and is not markedly sensitive to chain structure.

Both rubbers and plastics become increasingly viscoelastic as the tempera-
ture is lowered. In general, rubbers have lower glars transition temperatures

than plastics, and so become viscoelastic and then brittle in lower temperature

* ranges than plastics.

4. Z Material Characteristics of Amorphous Elastomers

A composite solid propellant is a highly filled rubber. Ballistic missile 6;

logistics demand that the filler be oxidatively energetic in order to deliver high

specific impulse during the combustion processes. The current science of pro-
pellant chemistry has narrowed the inventory of such useful oxidizers to com-
"binations of anmnonium perchlorate and alurr,.num. In this combination, the

aluminum serves to preven: cver-oxidation of the rubber fuel and at the same
time, by virtue of its high exothermic heat of combustion, overcomes the dis-
advantages imparted to the exhaust gas by its high molecular weight.

Rheological studies have shown that it is expedient to incorporate the

filler as a trimodally distributed agglomerate of particles, ranging from one to

Z50 microns in diameter with the mean size occurring at about 30 microns. Single

"crystal studies have shcwn that the aluminum-rubber bond in tension is approxi-

mately 90 psi. and that of the oxidizer rubber about 30 psi. Since the tensile

strength of a filied rubber lies in the ran6.:. 20 to 200 psi at room temperature, it
is seen that the filler-binder interaction contributes an important feature to the

mechanical behavior of such composites.. Because of its relatively high bulk

and shear moduli. the filler may be assumed to be absolutely rigid.

The binder, according to current standards, is a synthetic rubber, negli-

gibly crystalline, with a molecular weight between juncture points anywhere

from 10 to 100. 000. These juncture points may be branch-points at which a tri-
or tetra-functional monomer has been incorporated into a condensation polymeri-

zation system; or they may be crosslinks effected, not by vulcanization, but by

mixed condensation-addition polymerization. The mechanical properties of the
binder, without its filler, are not the same as those of the pure rubber. The

polymerization process is markedly affected by the presence of the filler.
Needless to say, the mechanical properties of such a composite are a

quite complicated function of the properties of the binder, of the volume fraction.

particle size distribution, and adhesion of the filler. In order to understand the

. _

. .. . . . . .



-201-

fracture mechanics of such a system, it is appropriate to study first the fracture

mechanics of unfilled rubbers, and then study the modifications produced by var-

ious degrees of filler. In carrying out this comparison, it is extremely important

to remember that the filler not only modifies the mechanical properties, but also

the molecular structure of the binder, so that it is necessary to understand how

the mechanical properties of a rubber depend upon molecular structure.

Finally, before proceeding with this study, it is approp.riate to ask:

what are the important modifications introduced by the filler? Experimental

studies on propellants have shown three differences from unfilled rubbers.

First, the tensile properties of filled rubbers are very different from their corn-

pression propertieb. Second!y. Yield occur,_ in a series of steps; it may be neces-

sary to distirguish among several types of yield. For example, it may be impor-

tant, from the ballistic viewpoint, to define yield as the point at which the propel-

lant has become porous enough. by virtue of mechanical strain, to increase its

burning rate beyond a safe value. This critical porous strain m.ay be less than

the strain at which mechanical fa.lure will occur. Thirdly, relaxation of stress

progresses long after the rubber component has relaxed to its rubbery modulus;

this indicates that a reshuffling of the adhesion bonds and positions of filler par-

ticles is a continuing process.

The next sections discuss the elastic fracture of rubbers and unfilled

binders.

4. Z. I Unfilled non-viscous elastomers

As the title of this section indicatts. the materials wit!, which we are deal-

ing store energy reversibly until fracture. This behavior is associated with very

low or very high rate straining of elastomers. During fractureenergy is released

which can, in principle, be accounted for by the kinetic energy and surface energy

imparted to the new crack. The crack acts as a point of stress concentration but

the local stress far away from the crack will remain below the yield stress of the

material and thus continue to store energy elastically until the crack propagates

through the material, at which time all the remaining strain energy will be con-

verted into kinetic energy. Cracks per se will not be considered ar this point

but some insight into the failure of unfilled elactomers can be gained by considering

the ultimate behavior of uniaxial tensile specimens.
Examples of unfilled elastomers are natural rubber, butyl rubber, styrene-

butadiene rubber (SBR, formerly GRS), and polyurethane rubber. All such
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rubbers evince large shear deformations prior to yield or cracking, and should

therefore be characterized by a theory which allows for large deformations. The

simplifications of small strain theory not withstanding, some progress assuming

large strains is possible for the usual uniaxial tensile specimen failures. Rlvlinv

has shown that the strain energy of a unit volume of undeformed rubber mayF

be appropriately expressed as a function of three strain invariants. which, for an

incompressible material, assume the form:

Aý + 4% (4. 2. 1&)

+7E + (4ý2.1b)

)4 (4.2.1c)

where X is the extension ratio of the coordinate acted on by the normal stress 41.,

Application of the principle of virtual work leads to the stress-strain relation* in

terms of the true stress

b W_ (4.2.2)

where £ is. in general, a function of the coordinates, but not of the strain i"var-

iants.

* In order to use (4.2.2). 5.t is necessary to understand the nature of the strain

energy density function W, and in particular, to procure an analytical represent&-

tion which holds as close to rupture as possible. We shall take as our type mater-

ijal. for this study, unfilled natural gum rubber vulcanizate, the simple stress-

strain curve for which is reproduced(4"10) in Figure 4.1. It is zharacteristic of

natural rubbers that they possess a sharp increase in stress beyond 500%elonga-

tion. Most synthetic rubbers break near this elongation.

An empirical method for rectifying simple tensile data (411) obtained os

incompressible elastomers is based on the following observations. The initial

portion of the stress-strain curve is fairly well represented by

or ~ Y Ž! (4.2.3)

When shear forces as well as normal forces are acting, the X. s are replaced by
a set of apprc priate strain tensors. In what follows, (4.2.2 ) vhU suffice.

I -.
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which is equivalent to plotting the data versas the true stress , i.e.

* ~u (?-.)(4.2.4)

Note that for large extension ratios (4.2.3) approaches the limiting value rsE.

In order to provide for the rapid increase in stress with later portions of the

curve at large strain, (4. 2.3) may be modified more or less arbitrarily to

"M M -w N e (4.2.5)

which reduces to (4.2. 4) for 3 at small strains.

e .- (4.2z.6)

One can use (4. Z. S) in plotting the data (Figure 4.2) as

+ ~(4.2. 7)

where it is observed that the stress in kg/cm2 is given by

OY= 7.39 •- e't-t) ;. t:,• 4 .a

(4.2. 8a)

•-.•o.•s -• e°'e•''• ;>, (4. 2. 8b)

We proceed to define )X u 6 as a yield point and observe that the modulus after

yield is reduced by slightly more than a factor of 10. indicating that the network

resist-nce has been drastically lowered. Since modulus is proportional to cross

links per unit volume, we infer that the loss in cross-link concentration arises

from the slippage or tearing of entanglements, and that only the true chemical

crosslinks remain to offer resistance. Support for this inference is deduced

from the observation that the exponential factor now behaves more like X than

* since P has doubled. This means that the load rather than the true stress is

proportional to strain, the proportionality constant now behaving like a spring

constant; lateral effects have suddenly become unimportant; the network loops

now offer little or no resistance.
The exponential factor exp P( X- f ) is not amenable to quadrature and so

the area under the curve-in Figure 4. 1 was evaluated stepwise by Simpson's Rule

and the resulting strain energy plotted in Figure 4.3. This smooth monotonically

increasing function of X is nicely rectified by plotting W vs (I1-3) as network

M,
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theory (4.12) demands, (Figure 4.4). Again note the yield at X a 6. Below yield,

the strain energy function is closely approximated by

"W' -t08a(.2.9)

so that the shear and Young' s moduli are approximately 1. 76 kg/cm2 and 5. 28
kg/cndt respectively; this is a somewhat lower value than that obtained from

Figure 4. 2, but this is so because in (4.2.8) a higher value of E is needed to

compensate for 7 ; in other words, only the initial portion of the tensile curve

can be represented in the form (4.2.8) with pa 7 and E 5.28.

4.2. 2 Filled non-viscous elastorners

The most striking difference between filled and unfilled elactomers is the

so-called blanching phenomenon or pul!away of the binder from the filler. As

indicated in the introduction, this makes for three observations. First, the pull.

away occurs in steps, undoubtedly depending upon the distribution of adhesion

bond strengths betwecn oxidizer and binder. Second. it does not occur in coin-

pression. Third. after pullaway. relaxation not of tbe network, but of the strain

energy located at the surface of the void spaces, occurs. This is demonstrated

by the fact that a typical filled rubber, after three months at constant strain

(30%. might relax its modulus from 500 psi to 5 psi. And then. upon complete

recovery of the applied strain at the end of a second three months. will resume

its initial modulus minus the contribution that arose from the adhesion to the

filler. If this cycle is repeated a second time, the modulus will relax and return

to nearly the same value.

Because of this reversible shuffling back and forth of the filler particles.

it follows that the time rate of change of tI.e local stress distribution in a filled

rubber must be quite complicated and that the rupture criterion may be signifi-

cantly more complex than that w,- ch is proposed above for an unfilled rubber.

One can start by neglecting relaxation. i.e., working with short time data. On

this basis then, the curvature of a tensile stress curve is to be Ascribed entirely

to pullaway effects without reshuffling. The modulus decreases because adhesion
bonds are broken and because the propellant dilates. This dilation eet is shown

in Figure 4.5 where Poisson's ratio is plotted -ersus axial strain, the local

: strains having been carefully measured photographically. Figure 4.6 shows how

the modulus is increased in the region of negative strain or compression. The

"- A
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question arises: what sort of elastic behavior is evinced by such a material when

it is subjected to combined tension and comr.'ession?

Effect of orthotropic moduli. A relative..- simple case arises in the pres-

surization of an infinitely long hollow unbonded tube of propc'.lant, internally

pressurized, the analysis of which will be pursued here. Since the algebra is

quite involved, only the essential features will be sketched. It is thought that

this type of analysis will become increasingly important as the nature of the pull-

away effect becomes more completely understood.

As a result of internal pressurization, all radial and axial elements cf the

propellant tube are in compression. The hoop elements, however, are in tension

so that an orthotropic response may occur. Jaeger (4.13) shows that for such a

case. wLcrrr the orthotropic material properties are with respectto cylindrical

coordinates. the stress-strain relations are

15'0ý. c-CO. CID c.GV* C.U9 T* C=4. c'rr (4.2.10)

o . 3 % +c•- "+ er +, (C, ,,- c )ea i r. C .4  r,,.

C.% GO + (c,.,- 2C Er Cex ra= c.. rlt

By analogy with isotropic theory, we have

C•. =M (4.2.11i)

C,,

Since the hoop direction is the only one in tension. C3 3 is the coefficient that one

would measure in triaxial tension so that (C 3 3-j21) is indicated by the Lame con-

stant with a double subscript T. Likewise, (C1 1 -2F) is the Lame constant one gets

from triaxial compression, and is designated by the double subscript C. The

coefficient Ci 3 is an interactic- coefficient which could be measured in mixed
triaxial compression tension. i.e., pulling in one direction and squeezing on the

two sides. In the isotropic case, the constants reduce to

Cas-2.M =. C,=C., -2" A (4. 2. 12)

where K is now the hydrostatic bulk modulus in compression. In the problem at

hand, we have

• -: : .. ..- .:• . . ..
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ca +cis d (4.2.13)CIS J& .- + C,s IA(42-4

rd
Os CsA+(o -,,duk (4. Z. 1 5)

where u is the radial displacement. Substitution of the above relations into the

equation fý stress equilibrium

"+ . o(4.z.16)

yields

+d' I du e4.a .1U

. Note that, by direct observation, X,. (because of the pullaway effect) and
"therefore C33/C1i< 1. The solution of (4. 2. 17) is given by

ii. -jh-scs-) (4.2.18)

where k = (C 33  •). The constants A and B can now be evaluated at r a a. and

r a b. where ar -P and 0 respectively. The result is

'4k__ a4W k-r~ak)
.r (ah b"•a ) (4.Z.20)

CU k [~14k. - l)'1!:...-0 (• • _ ( ,, r:••*4. Z. zz) .-

'[- 
..

* ask

b -+k* 
k

il, ~Note that if C 1 3 /C 1 1 >k, the radial displacement is negative. However this •

S; ~i3 not physically possible since the work done by the internal pressure must al- •
:. -: ~ways be positive; hence one should find experimentally that C131C 11c k. The ,
' ~most significant difference from the isotropic case arises in the occurrence of •

F•- " ~fractional rather than integral exponent powers of the radial coordinate. The .Co. 4b)

SCIS-- I.W a-sk

...............................................
Not that if C >k th raia dipacmn is negative Hoee this .
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strain concentration factor is defined by the ratio of --A to bA which leads to

(k- + ak + k

for a thick-webbed shell. In the isotropic case, where k a 1. (4 Z. Z3) reduces
to the correct expr'ession -I- MR

The same treatment can be applied to the case-bonded propellant. It will

be necessary in this and many" other situations to solve for the point at which the

hoop atress changes sign. By following this procedure, one can avoid trial and

error techniques. In general, problems of this nature will best be solved with

the aid of digital computational aids. Before programming, however, it will be

r.ecessary to determine the strain energy function for the propellant in both com-

pression and tension. The theory of finite elastic deformation of animotropic

materials has been presented by Green and Zerna(4 .1 4 ) so that, in principle.

the pullaway effect can be handled all the way to rupture if the strain energy

density function is known.

4.3 Uniaxial Test Data

Considering the implied necessity for obtaining material property data for

fracture investigations, such as the strain energy density function just mentioned,

it is appropriate to review some of the current tests commonly being conducted,

and their applicability to the problem at hand.

4.3. 1 Standard variable-strain rate t.:stinL

By far the largest accumulation of data relates to fracture under simple

uniaxial tension. For solid propellant materials these tests have normally been

conducted on standard JANAF specimens (Figure 2. Z9)at variable str'.in rates

and temperatures. One common testing machine is tIo Instron tester which will

impose constant crosshead motion through a range of speeds from 0. 02 to Z0

inches per minute. over a temperature range between-1U0 0F and 160°F. The

output of the machine is an automatically recorded force-time trace to fracture

(Figure 4.7) which provides the basic experimental information. Depending upon

the magnitude of strain to fracture, the data is converted into plots of nominal

or true stress, i.e. force divided by original or actual cross sectional area,

versus strain. The accuracy of the latter quantity is frequently open to question



because the elongation, or crossbead separation, is not distributed evenly over.

the specimen length and some "effective length" must be selected. It is common

practice to use an effective length of 2. 7 inches for the JAMAF specimen. It has
Sbeen noted in an earlier section however that Baldwin 2 1" 7?) has had some success

in using a square flat end, bonded specimen which reduces the amount of flow

near the grips and hence removes part of the gage length indeterminacy.
The uncertainty in the basic data emphasizes the desirability, and near

necessity, of developing local strain indicating devices for low modulus materials.

Several improvements along these lines have been attempted, such a.s using gage

marks near the center of longer specimens, or circle patterns distributed over

the length. While some increase in accuracy has been reported, the 4ata serve

also to indicate in many cases a basic nonhomogeneity in strain distribution due
to the filler particles in the propellant.

Neglecting nevertheless these important experimerutal refinements and

working only with the reduced experimental stress-strain data, one turns nexI

to the problem of organizing the extensive test information for many temperaturec

and strain rates in useful form. Presuming for the rrost part that maximum

stress, IF , and strain at maximum stress, &mV are the more significant quan-

tities Smith has shown for a wide variety of polymers that a very reasonable cor-

relation of ultimate tensile properties can be obtained if the data are plotted

against the logarithm of a reduced time parameter (see Section 2. 5) aTR, where ,•

R is the constant strain rate at which the test was conducted and aT is the Wil-

liams. Landel, Ferry (WLF)(4 15) temperature shift factor, (2.5.6)

- IC(T•s) (4.3.1)Lo• ~ tI CZ• +oi -T- -re s

aT can also be interpreted as the ratio of the time to measure some phenomena

"at temperature T to the time to measure the same phenomena at the reference

temperature Ts. This relation can also be cast in the Tobolsky form (Z.5.S).

A set of his typical strain data is shown in Figure 4.8, and similar stress

data in Figure 4.9. Note in the latter case the stress has been normalized by a

temperature ratio because polymer theory predicts a linear increase of retractive

forces with absolute temperature. Both sets of data were normalized as described

in section 2. 5 by using the temperature shift f .tor, experimentally deduced from

separately shifting (i) strain at ultimate stress data, (ii) maximum stress data,
and (iii) modulus data, and finding all three agreed if C1 5 -8. 86, C 101.6
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and T a 269 0 K (Z. 5.6). That such a convenient and neaz universal correlation

exists for ultimate propertits is extremely useful, and among other things, per-

mits one to predict with fair precision the uniaxial tensile fracture behavior over

wide ranges of strain rate and temperature from a limited set of test data.

Figures 2. 2.5-2.27 show some typical data for the tensili modulus, ultimate

stress, and ultin ate strain of various propellant compositions in order to indicate

the range of properties to be anticipated at different strain rates and tempera-

tures. It should be emphasized however that marked deviations from these data

may be expected for particular compositions of ingredients within the class pre-

scribed.

Before passing on to a conaideration of fracture under multi-axial load

conditions. it should be observed tint the temperature shift correlation is rea-

"sonably well founded experimentally but that the limited strain rate capability

of the Instron tester is not particularly well suited for verifying the correlation

over wide extremes. This may be noted in Figure 4.8 where the test data at

various temperatures barely overlap. One would feel much more confident if.

for example, the open circle (160°F) data obtained over the t/RaT range 5 to 8

could be extended to lower values by increasing the stiain rate, hex ce lower

I/RaT, at the same 160°F temperature. Bearing in mind however the limitation

of the tester, approximately 20 inches per minute cross head motion maximum,

it is impossible to fulfill this desire without changing the specimen, which would

not be particularly acceptable.

4.3. 2 High strain rate testing

The obvious ansuer is to inquire if higher rate testers would be available.

Several have been developed. One of these is the Allegheny Instrument Company

device(4.17) which is generally well known. Another is one developed by E. I.

"Du Pont de Nemours and described in a recent paper by Jones (4.-8) Basically

this latter machine, which achieves high loading rates by means of a controlled

explosion of smokeless powder in the head, can strain JANAF specimens up to

approximately 200, 000 inches per minute. While it is premature to generalize.

indications from this and other high speed tester work are that the theoretical

WLF shift factor for ultimate fracture of tensile JANA.F specimens is sufficiently

valid for engineering purposes.

S

p- o
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4.4 Multiaxial Testin.

Inasmuch as the uniaxial testing procedurce for simple JANAF tension

specimens are well known and data reduction techniques widely disseminated.

the subject has been rather shortly dismissed. On the other hand. from a struc-

tural standpnint as distinguishef' from the quality control objective, the important

subject of the fracture behavior of viscoelastic materials subjected to biaxial

and triaxial loadings needs considerable amplification, but suffers from lack of
experimental data. At the present tane, it is proposed to discuss some possible
experiments in this area with particular emphasis upon their suitability for solid --

propellant materials and due regard for testing equipment convenience.

4.4.1 Pressurized tensile tests
Perhaps one of the simplest extensions of the present uniaxial tensile test

using the Instron tester is to enclose the specimen in a leak proof container filled
with air or liquid maintained at an

arbitrary compressive pressure.

Within the same criticisms of the
basic test with no external pressure,

a triaxial tension-compression

stress field can be imposed. Sup-

pose that the geometry is as shown

on the sketch. Then the stress and
strain analysis for the central portion
of the specimen subjected to the uni-

axial tensile stress gives

; 2 w .k (4.4.I)

U=O~a; .=;•2jv.+%-s) kJ (4.4.2Z)

One would expect therefore an apparent uniaxial modulus for this triaxial field of

V (4.4.3)

where, because in the tests as described k is negative corresponding to a corn-
pressive stress. the apparent modulus would be smaller than the uniaxial modulus..

* . .. _ _ _
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For small strains it would in principle be possible to deduce the (elastic) value

of Poisson's ratio.

As in the former case, these tests could be conducted at various strain

rates &nd temperatures.

4.4.2 Poker chip tests

Another test that may be conducted with relative ease connists of cementing

a thin circular disk of propellant between two parallel end faces of two circular

steel plates being subjected to tension. The softer disk sandwiched between the

harder bars will be restrained, because of its thinness, from its u3ual contrac- .

tion perpendicular to the load and hence generate a triaxial tension stress field.

The elementary analysis for this case may be made by assuming the disk

infinitely thin such that the external radius is sufficiently far from the center to

assume the only non-zero displacement, w, is in the axial direction. Under

these conditions, one is led to deduce for small deformations

,-(-2 (X.-1) (4.4.4a)
F (I- V) .

OOa,=-v ; 0*=E o (4.4.4b)

so that the apparent axial modulus becomes

Ia E (4. 4. 4c)

where it may be noted that for propellants. which are characteristically nearly

incompressible. i.e., V T, the triaxial tension approaches hydrostatic with a

consequent infinite apparent axial stiffness.

A fairly extensive and revealing investigation into the use of this test for

an incompressible rubber has been reported in two papers by Gent and Lind-

ley(4 • - ) When one attempts to improve the analysis outlined above, the

major difficulty arises in determining the stresses and strains throughout the

disk. Whereas the previous analysis assumes the edges are infinitely far from

the center, in the actual test piece there -will be a local necking of the propellant,

however slight, as the assembly is subjected to tension. When this effect is

accounted for the analysis becomes considerably more complicated. For an

inconipressible material, Gent and Lindley have given an approximation to the

apparent axial modulus which depends on the thickness. h, of the disk or radius a.
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EaE[Ij(~)1(4.4.5)

where it may be observed that the apparent modulus, as before, becomes infinit•e

as the thickness approaches zero.

Furthermore their fracture data, reproduced in Figure 4. 10, shows for

the various compositions indicated by the different curves that the axial stress

to cause fracture increases as the disk thickness decreases. They have sug-

gested that the limit for zero thickness is twice the value for large-thickness.

While it is tempting to thus extrapolate the data, it is not unreasonable to expect

the curve near zero h/a to change slope. Realizing that the breaking stress used

by Gent and Lindley is in reality an averaged stress over the face of disk, it

would be appropriate to obtain an improved approximation. This can actually be

obtained using the principle of minimum complementary energy. The outline of

such a solution, given in Appendix I and not restricted to incompressible ma-

terials, predicts a -stress distribution that is a power law in the radius and hyper-

bolic in the thickness, and for the limiting situation of zero thickness (infinite

radius) gives the proper limiting value r I/az aJ,'(1-'). Further calculations

to investigate the utility of this solution in interpreting the experimental failure

data would be desirable.

By conducting such tests as reported above, using an Instron tester, the

usual ranges of interest in strain rate and temperature can be covered and the

possibility of strain rate-temperature shift further explored.

4.4.3 Diametral compression of a disk

Fitzgerald(4 .) has suggested that the disk type specimen may also be

used in an alternate manner to examine a mixed tension-compression biaxial

stress field. If a circular disk of uniform thickness, h, is loaded in diametral

P compression by a load, P. the

stresses at the center are of

opposite sign and equal to( 4 .2Z2)

N P
ffbh (4.4.6)

Furthermore the diamnetral extension. Zu(b, 0) along the horizontal (y = 0) plane is



K

-213-

P

2U (bO) b, -- - V (4.4.8)

Providing there is not local failure at the point of load application, this specimen

has the advantage that the critical stresses occur at the center and may be easily

observed. Furthermore. measurements of the horizontal extension permit an

indirect check on the accuracy of the foregoing formulas. Presumably as long

as the extension stays linear with the applied load, even though the deformations

near the point of application may be large, one would feel justified in using these

stress formulas based upon infinitesimal deformation theory. From the stand-

point of fracture. Fitzgerald has found(4 " that the character of failure at the

center changes from tensile to shear depending upon the temperature of the test.

This latter point, of course, emphasizes its potential significance as a sensitive

test for determining a fracture criteria.

Incidentally, it may be observed in passing that the range of central

stresses which can be imposed, i.e. or y/x -= -3 from (4.4.6) and (4.4.7) above,

could be extended by the use of elliptical instead of circular specimens, although

at some expense in experimental simplicity.

4.4.4 Torsion of rod specimens

Among the various types of mechanical testing, torsion stands as particu-

larly important. There are several reasons for this. First of all, a cylindrical

specimen subjected to a small angle of twist undergoes pure shear; the applied

torque is directly proportional to the measured twist angle per unit length, the

proportionality constant being the shear modulus. Thus the torsion properties

for small strain should be independent of Poissont s ratio.

As the shear strain is increased, however, new effects enter the picture.

Finite elastic theory predicts a lengthening of the specimen known as the Poynting

effect.

It may be deduced that

I =+ -- i--" a-a) (4.4.9)

4

where k = -•_ is the axial extension ratio

a.b are the inner, outer radius of the cylinder respectively

k is the angle of twist per unit length
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One obtains the preceding relation by application of finite elastic theory to the

strain transformation defined by

=9 e+kz

"•=

where the bars refer to the deformed coordinates of material points. The unde-

termined constant which enters into the theory because of the incompressibility

condition is determined by setting the integral of the axial stress over the end

face equal to zero. Figure 4.11 shows a plot of k I vs k 2 , taken from recent

data{4 .23) on polyurethane propellant. Note the excellent straight line correla-

tion in agreement with theory. The theoretical value of the slope is 1/8 in 2/rad 2 .

whereas the measured value turns out to be 1/7 in2 /Jrad2 . Considering the as-

sumptions made in deriving (4.4. 9) the agreement is excellent. The most impor-

tant observation that can be deduced from this is that the elastic properties of
the binder predominate at least up to three percent shear strain. A similar type

"of verification is provided by the recent data of Bergen. Messersmith and Rlvlin
on filled rubbers(4.24)

On the other hand. indications are the elongation will decrease as the

twist is increased further. This is to be expected since the pullaway of the binder

from the filler will tend to convert the local shear into local simple.tension around

the filler particles. What effect this will have upon fracture in torsion is not
known. It is suspected that the fracture criterion will not be as simple for a

filled elastomer as an unfilled one. therefore torsion should provide an excell-nt
way to check out the applicability of the distortion strain energy criterion. Fur-

thermore. torsion under superimposed hydrostatic pressure can then be used to

check out the importance of anisotropy.

4.4.5 Hollow tube tests

Providing a satisfactory strain measurement is available, the behavior of

an internally pressurized thin or thick walled cylinder up to and including burst

would yield fracture information under biaxial tension, for zero axial stress, or.
with the added triaxiality depending upon the nature of a finite longitudinal stress.
This type of specimen has been used with mixed success at the U. S. Naval Ord-

nance Test Station(4 " 25) employing an oil for the pressurization. The major

- --- - - - --
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difficulties aside from such obvious ones as preventing leakage, are to obtain an

accurate strain history and to measure the applied time varying pressure. These

tests can be used upon either thin or thick walled cylinders, and with or without

being enclosed in a case. In some cases it will be more convenient to check out

a thin case-bonded design using externally mounted wire strain gages and infer-

ring the tube, or even star point, strains by working backward using the theoreti-

cal solution. For most purposes however, the resultant case to grain stiffness id

so high that accuracy is poor.

The main advantage of such a test is its reasonably close similarity to an

actual operational configuration. If the pressure-time rise is appropriately regu-

lated, the test could be useful in predicting fracture under a varying and typical

strain rate history.

It should also be mentioned that it is possible to extend the rod torsion

tests mentioned in the preceding section to hollow cylinders, preferably thin

walled because of the relative accuracy with which the theoretical solution is

knovwn. Another test variation using the hollow tube is the possibility of using

this geometry to examine the effect of orthotropy of multi-layered cylinders.

Some preliminary analysis along these lines was presented by Pister in

Section 3. 3. 3. The results of his continuing program, including some
planned experiments, should furnish evidence for or against the desirability of

this test geometry for orthotropic propellant media studies.

4.4. 6 Specimens with initial cracks

Multiaxial testing can also be extended to include the biaxiall.stress field
which -xists near the point of a

t it I crack in a medium which has already

begun to fracture. We shall consider

the state of stress in several initially

cracked configurations and their as-
sociated stress fields, and criteria

"Zb -for crack propagation.
Thin sheets subjected to

stretching: A common configuration

for metal sheet specimens not used

I - . 4
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extensively for propellants is the tensile strip containing a crack perpendicular to

the load. This test in conjunction with Griffith fracture theory(4"26) is used to -

determine critical crack length, i.e. , to find what size crack or flaw a given ma-

terial of specified thickness will sustain under a specified external stress before

it becomes unstable and propagates catastrcphically. For catastrophic propagation

of a brittle fracture Griffith deduced that, for a crack of length Zb, the applied

stress ff. must exceed

Sr (4.4.0)

where T is the characteristic surface tension of the material, pounds per inch.

For glass T'-10" pounds per inch.

Propellant materials are however not usually thought of as brittle mater-

ials except in the glassy regions where (4.4. 10) might of course be expected to

apply. In 1953, Rivlin and Thomas (4. 8) proposed an extension of the Griffith
hypothesis for the rupture of rubber and found it was possible to correlate the

tearing, providing T was interpreted merely as a "characteristic energy" and

not necessarily the surface tension. For the gum rubbers examined T-100 inch

pounds per square inch. In the process of establishing this correlation. Rivlin

and Thomas, and their subsequent collaborators, were able to get by with rather

gross approximations of the stress fields. It is appropriate at this point, par-

ticularly as fracture criteria will be discussed in a later section, to state some

of the characteristic features of the biaxial stress state near the point of a crack.

The classic problem in this field was solved in 1913 by Inglis(4" 27) who

*.- calculated the stresses in the vicinity of an elliptical hole in an infinite sheet.

S* - Since then many investigators have worked upon related problems. Rather re-

cently a somewhat general analysis for the geometry shown in the preceding

figure has been given by Ang and Williams for an orthotropic sheet subjected

to combined stretching and bending, wherein the sheet is assumed infinitely wide

with respect to the initial crack length 2b. These results show that the elastic

"stress distribution along the line of crack prolongation and assuming small de-

formations is

." VX.o) 7 rX, o)-- (4.4. I1)



and near the crack point. x 1c b +e.

so that (i) the normal stresses at the crack point are equal leading to a two-

dimensional hydrostatic tension and (ii) infinite stress magnitudes exist at the
(4.29)crack point. Further analysis shows that the circumferential variation of

stress around the crack is such that the maximum stress occurs not along the

direction of propagation but +60 degrees off to either side. The octahedral

stress variation also peaks off to the side +70 degrees. Such deductions show

the complexity of the stress distribution near a crack and suggest that a more

refined stress analysis be incorporated when assessing the fracture of visco-

elastic materials.

There are, however, three factors which should be emphasized. First.

is the elastic analysis valid for viscoelastic materials? It will be recalled that

if all the boundary conditions on a linearly viscoelastic material are prescribed L
in terms of stress, as in this p-rticular case, then the viscoelastic stress dis-

tribution is identical with the elastic one. Second, the mathematically infinite

stress at the crack point is physically inadmissible. On the other hand, one can

in the average sense hypothesize the existence of a small region of constant finite

stress with a characteristic radial ex-

tent 6 which would give a stress dis-

tribution such as shown in the sketch.

SIn a metal specimen, such a region

may be associated with the area of

S* plastic flow; the equivalent association

for viscoelastic materials might be in

terms of an agglomeration or Lundle

of polymer chains, and from the data

of Greensmith(4. 30-4.31) at low strain

n$A'WCU PRMo i rates seems to be of order 10" inch.
CUAC T pThird, if the strains are so large, will

not the assumptions of infinitesimal theory be violated? The answer is yes, but

the mathematical solution of the finite deformation problem is nearly intractable.

Some exploratory work of Blatz(4" 32) however indicates that the stress singularity
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will probably not be removed, and hence one vo uld expect errors in magnitude

but not in the principle.

Finally, the centrally cracked geometry is not the only one which can be

investigated experimentally. One obvious alternative is the externally cracked

specimen and another is a one-sided crack geometry. Some analysis for the
(4,33)former is possible while the latter is complicated by a lack of geometrical

symmetry. No experimental data for viscoelastic materials is known for the

ft ttt t t t

Itw'r3UtAA.LV C~AC1CUD SAILIM SIOU'D C3%^C

former, although Rivlin and Thomas(4" 8) have used the latter extensively in their

experiments.

Thin sheets subjected to bending. Ancther loading of considerable interest

is in an initially cracked specimen subjected to bending. While the same centrally

cracked geometry as before could be used, and analyzed using the Ang-Williams

solution (4.28) taking into account some important amplifications by Knowles and

Wangl 4 . 34). it is more customary and experimentally more convenient to use a

slit specimen (see insert) or trouser-leg specimen. From the analysis standpoint,
the experimental specimen should be rea-

sonably thick so that the applied loading

produces only bending stresses near the

crack point. When the specimen becomes

thin, and particularly when stretched to
(4.8)

* large deformations as done by Rivlin and Thomas (see insert) a complicated
bending-stretching interaction problem

results which is beyond classical treat-

•p ments(4 .8). On the other hand, the

strain energy of deformation is mainly

confined to stretching of the trouser legs
with a high but localized strain energy at



the crack point. It is this feature, as incorporated by Rivlin and Thomas, which

accounts for the reasonably good correlation of tearing threshbold and character-

istic energy.

On the other hand, it will no doubt be necessary to conduct certain 'ending

and extensional tests designed to permit the maximum use of available analytical

solutions to investigate the general applicability of a "characteristic energy"
criterion, T. Specifically, as wiUl be discussed later, there may be an important

general connection which can be established betweeni T and, say. the distortion

strain energy.

Threshold criteria. As indicated earlier the first criterion for the elastic -

fracture of rubbery materials resulted from an extension of the Griffith brittle

fracture theory(4 Z6) by Rivlin and Thomas (48). The Griffith theory for thin

flat sheets of thickness h. results from considering the change in strain energy

in a specimen when a crack of initial length Zb, which is presumed small coin-

pared to any planar length in the extends a small amount &.(Zb) exposing

a small increment of newly formed surface with surface tension, T. Assuming

that this specimen is initially stretched by a stress &r, and then clamped at its

ends in this position, the strain energy in the sheet will be redced as the crack

grows as the energy in the new crack surfaces incr#-ases. In the limit when the

specimen parts, all the strain energy will have been transferred into surface

energy. Analytically this changein potential energy Vt becomes *

'12- - 2 (z2b)Tf (4.4.13)

4a

where the first term is the strain energy and the second is the work ovp.rcome

by the surface forces on both sides of the newly formed crack. At the equilib-

rium position of the crack just before catastrophic crack propagation, these two

contributions balance, or the change in VW. BV/B(Zb). is zero.

•M2b) 2T (4.4.14)

which implies that the critical stress at equilibrium for a crack of length Zb is
cr 14' (4.:.4.15)

V l(2t,)

*See Timoshenko and Goodier (4. ZZ). for a brief description of the essential
features of the theory.
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which relation was stated earlier (4.4. 10). The energy in the specimen at this

stress, by substituting into (4.4.13) is

-V;.= (b•r (4.4.16)

from which denoting the cross section area of the specimen by A a 2bh the surface

tension can be found as

ZA (4.4.17)

"if the energy changes ar evaluated or measured at a fixed length. i.e. clamped

ends.
Rivlin and Thomas(4.8) followed by various collaborations of Greensmith

and Thomas (4.30-31, 4.35-38) have proceeded to examine the application of a

similar criterion for rubber. They find that one does seem to exist as measured

upon various geometries and loading conc'" .ns but T should be viewed as a

characteristic energy loss not necessarily restricted to surface tension. The

fact that T is relatively constant, at a fixed strain rate, for various geometries
(4.31)

is encouraging. If one approximates their data analytically. it is found that P. -

"T" 1 o5(.4--s-e at 9ocf (4.4.18)

and

where t is the time to failure which reflects the strain- rate sensitivity, and T is

in ergs per cmZ. (10 ergs/cmi ; 60 in-lbs/in).

They further observe that T can be approximated by the relation1431

- W• d (4.4.20)

where Wd is approximately the critical strain energy density for failure as de-

termined in an initially uncracked tensile specimen, Wd 2 w0 /(ZE). and d is

the apparent size of the flaw or the diameter of the crack or razor blade cut at
the crack point in the unloaded position. And finally. Greensmith presents

some data which suggests that W* may be approximated at Z5 0 C by

d -



.e =,oo x too (4.4.21)

so that dividing (4.4.19) by (4.4.21). there results that

d a 0.03 cm 0.01 in. (4.4.22)

which is of the order of the measurements also observed by Braden and
Gent(4. 39-40). In principle then one may obtain the characteristic tearing

energy by measuring the energy density required to fail a tensile specimen and

reduce it by the diameter of the flaw.

It is possible to arrive at their results for a flat sheet by an alternate

interpretation in terms of the characteristic average stress distance, 6, intro-

duced earlier. If the a and r.y stress (4.4.12) are averaged locally in the

vicinity of the crack point, one can deduce

1 (4.4.23)

so that the factor (2b/6) is essentially a stress concentration factor. Compute

the distortion strain energy taking account of the stress field at the crack

e a t and a. a tof ind

W, r(O/r,)a AWA (4.4.24)

so that using (4. 4.23) and assuming incompressibility, the critical strain energy

density At failure in this specimen becomes

(4. 4. ZS)

But using the classic Griffith interpretation (4.4. 15) in the form

one finds

-r -(4.4.26)

which of course is the same form as (4.4. 20) but associates a characteristic

distance within the material with fail-rt.

It is also possible to show the connection with local radius of curvature
(4.41) by working with the general solution for the crack field. By integrating

k~~~ ~ ~ ~ RI-TM .- M. -"
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the elastic stress field to find the displacements, one can compute in particular.

the displacements of the crack boundary for the deformed, i.e. loaded, specimen.

For the internally cracked specimen the shape of the crack :r hole is elliptical

(4. 2) and the radius of curvature at the sharp point of the crack. R. can be asn

sociated with the applied stress as

R 4 (. (4. .27)

and hence using (4.4.23)

so that v: comparison with (4.4. 26)

I-= Ij W d(. (4.4.29)

which would also agree with (4.4. 20) if the local value of averaged stress at the

crack approached values of twice the tensile modulus*.

It should be emphasized that these latter associations have been made

after utilizing the assumptions of infinitesimal elastic deformations for sheet

specimens w'hereas the work of Rivlin et al. includes large strain measuremenrs

on various geometries. Nevertheless it is encouraging to see that the effects

% predicted by more sophisticated stress analysis are not inconsistent with these

other experiments and analysis.

Crack propagation. It is possible to make some headway in estimatinS

the velocity of crack propagation in a viscoelastic material after the fracture

threshhold has been exceeded. The primary new effect is the delay time in the

fracture introduced by the rate sensitivity of the material. A simple model wasre t (1. 6).
proposed in one of the previous progress reports and is included in Appendix

IL . A simple Voigt model and a limiting strain criterion for failure was as-

sumed, and any rate effect on the ultimate strain at failure was supressed. By

using the *mportant fact that the elastic and viscoelastic stress distributions are

identical, and the assumption of Voigt behavior, the viscoelastic deformations
- could be computed. When the local average strain at the crack over the length S

* . ihis type of assumption has been invoked by H. Neuber. -heory a NEES
Stresses, in estimating the maximum stress at a crack point in metals.
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was exceeded the crack would elongate by an amount 6. the stress field would

also translate by an amount 6. but the new strain increments would add to those

stores while the first element 6 was breaking. The velocity of propagation was

then estimated as v. = 6/t where tR is the time for the i-th element to rupture.

The result estimatesi the initial velocity as

V,'/. /f (4.4.30)

where EF* is the ultimate strain and Ev the tensili modulus and T the relaxation time
of tht Voigt model. From McCullough's preliminary test data(4 .2 it was

possible to deduce a value for 6 which turned out to be 10-3 inch, not in unreason-

able agreement with the 10"2 inch static value deduced from the Greensmith ex-

periments.

Subsequent growth of the crack in terms of the distance 9 fr-om thn crack

point. was found to be

-• ___r-_ 1 •(4.4.3X )

and

-> " (4.4.3Z)

which latter value becomes suspect for large times because the velocity of props-

gation is unbounded in contrast to reality, probably because the inertia terms
have been omitted from the equations of motion for this viscoelastic material.

Braden and Gent (4 39-40) have measured crack growth in sheet specimens in an

ozone atmosphere and find velocit;es of one-tenth inch per minute at low applied

stresses, consistent with McCullough's measurements, but also find the velocity

is nearly independent of stress level at low stresses, whereas (4.4.31) predicts

a reasonably strong stress dependence.

As a final word it is possible to improve :'- above results using essen-

'tially a general viscoelastic model based u-=pzn an approximation to the creep com-

pliance (4. 1. 3). It will be found that the strains along the crack in au incom-

pressible material are
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(4.4.33)

and a similar expression for ax(x, O;t) using the Appendix. The procedure outlined

can be repeated. The time when Ey reaches a critical value E• can be computed

frem the above; the stress and strain analysis in 6 steps can be repeated, although

it is immediatr.ly evident that the computations become somewhat more involved.

even if accot.nt is taken of the primary glassy response at the crack point. Never-

theless (4.4.3.,) has the important advantage of approximately the entire spectrun-
of relaxation times of the material, and furthermore, as rate sensitivity on
failure criteria will be discussed in the final section, one can compute the strain

rate at any time. This can be carried out for the biaxial strain field if desired.

One can now use this knowledge of stress, stress rate, strain and strain rate

distribution in time and space in conjunction with failure criteria, including rate

effects, to investigate the mechanics of viscoelastic crack propagation with rea-

sonable precision--if not simplicityl

4.5 Selection of the Failure Criterion

In accordance with the remarks introducing this chapter, it will be assunsed

that the elastic type of fracture is characteristic of cross-linked propellants. andA

therefore, that yield and fracture occur almost simultaneously. It should be re-

called that in contrast to bri.'tle fracture of many metals. propellants may sustain

considerable strain before failure, and therefore in terms of strain at break

rubbers may be characterized by several hundred percent, metals by a few tenths

of a per cent.

A briatle material must be able to fail in at least two ways--either by dila-

tation or by distortion. For example, a sample subjected to hydrostatic compres-

sion will suddenly collapse its volume when the critical pressure is reached; or in

hydrostatic tension which is not an easy stress field to E-nerate, it will suddenly

I -
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tear. Gent and Lindley ) have measured this triaxial yield stress for vuli
canized rubbers and shown it to be around 80 psi. Presumably. the failure€

(443)
stress in compression will be much higher. Bridgman shows that one

should expect a minimum of several hundred thousand psi yield stress. These

facts show quite clearly that the distortion strain energy alone or, indeed, any

failure criterion which involves shear forces, is not adequate to explain hydro-

static failure, since hydrostatic forces generate no shear strains. Similarly,

a sample may be caused to fail in pure shear, applied in torsion. No measure-

ments of the torsile yield stress appear to have been reported for polymeric

matet.rials, but the existence of a torsile yield stress n,.ans that any failure

criterion bi.sed on dilatation alone is inadequate.

It fohjws therefore, in the most general case. that each material must be

characterized by at least two failure criteria, and that there must exist conditions

under which both types of failure may occur simultaneously. Also it should not

be expected, in general, that the two criteria are independent. For example.

the critical shear stress in torsion may be a function of the amount of superim-

posed hydrostatic pressure or hydrostatic tension. In- the following section. a

geometric description of these concepts will be presented.

4.5. 1 Geometry c! normal yield stress or yield strain space

Because of the many criteria for fracture, it is convenient to have a

method which permits the analyst to visualize their region of possible application.

Inasmuch as the three principal stresses are orthogonal and participate in an

stress theories of failure, one way of presenting the criteria is in terms of prin-

cipal stress spare where the rnagntudes of 7r, Wr., a.rd are measured along

the orthogonal axes to form octants. A similar Ppproach could be adopted for

strains. The rupture of an uniaxial tensile specimen at the stress would

therefore correspond to a point on the r3 axis at the particular value e'. Other

combined loadings would in a similar manner correspond to other points on a

rupture surface F( 1 , G'. a-, 3) r constant, where the object of failure testing

would be to perform experiments under all different combinations of combined

stresses in order to trace out the failure surface in all octants. Presumably

there would oe many surfaces, each corresponding to a given strain rate for

which the surface was obtained. Then, having obtained such surfaces experi-
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mentally, the analyst would proceed to check out various criteria in the different

octants and the one lying closest to the test surface would be the desired failure

criterion.
Strain energy criteria. Inasmuch as critical values of strain energy,

either in terms of stress or strain, are among the most prominent hypotheses.

we shall proceed to develop the geometrical interpretation, assuming for neces-

sary simplicity at this time that the material is linearly elastic and that infinitesi-

mal deformation theory applies. Furthermore it is always possible to choose

-' . coordinates in which no shears act along three orthogonal axes and so only prin-

ciple (normal) stresses and strains will be treated. In practice, most mechanical

testing is applied to specimens whose geometry guarantees that the applied normal

stresses are indeed principal stresses. In this sense, the stress-strain law may

be written:

L.1,23 -Or.'+e*C-8 (4. 5.t)

The mean hydrostatic stress is given by.

(4.5.2)

The total strain energy is given by:

2L 2 3

where i '= 6,iaG-a e3s " , r. and where the double subscript indicates

summation. The dilatational strain energy is computed from the volume change by:

"• w.;.= =(4.5.4) .-- !- .

and thus the distortional strain energy is gi-en by.

W- 31$11 (4.s.S)

If the strains are replaced by stresses, Er-ations (4.5. 2) and (4.5.3) may be -

rewritten as:

Aft (4.S.6)

W" 2,
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Wr1,• =(4.S.7)

where - +O ""

Reasonable critical values (denoted by asterisks) rn.y be anticipated at

this time for both forms of the strain energy function. For example, in simple

tension. Equation (4.5.7) reduces to:

6.- 
4.5.8)

where wT is the simple tensile strength at yield. Inspection of the various simple

tensile data on propellants immediately reveals that the distortion strain energy

will probably not exceed 10 psi. For many propellants. this is a generous figure.

as is well realized by anyone who has flexed dogbone tensile specimens to fracture

in his lingers. Continuum rubbers, on the other hand, may well reach 1000 psi

at failure. Thus. the effects of the filler particles are markedly evident in this

drastic reduction of the distortion strain energy.

Recent unpublished triaxial test data obtained on tablet-shaped specimens

present some evidence as to the magnitude of the dilatational strain energy for

propellants. In the case of polyurethane propellant, the triaxial stress rises to

100 psi before rupture at 0.7 percent strain. These figures correspond to a bulk

modulus of 14000 psi, much lower than that observed in hydrostatic compression;

the associated dilatational strain energy is only 35 psi. For continuum rubbers.

the data of Gent and Lindley( 4 20) indicate a dilatational strain energy of 30 psi.

Thus, the filler particles do seem to reduce markedly this latter quantity.

Imagine now a rubbery linear elastic material characterized by the follow-

ing four parameters:

K a 250000 psi

P = 150 psi

SWdil. Z5 psi in tension, infinite in compression

- st 5 psi, independent of the value of hydrostatic stress.

The question arises: what ranges of triaxial stress or triaxial strain will such a

material sustain without yield. Let us first look at the geometry in the stress

space defined by the three orthogonal directions of normal stress. The dilatational

criterion may be expressed as:
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where a* is the value of the hydrostatic tensile stress at which yield or failure

will occur. Equation (4.5.9) represents a plane surface in normal stress space.

located at a distance f3r* from the origin, and whose normal is oriented at an

angle of 540 44' to each of the principal axes (cos P =4). Equation (4.5.9)

thus expresses the sine qua non for application of the distortion cliterion. For

the given material, r* & 3500 psi.

The distortion criterion may be expressed as:

2A4 ("+•0•+(0• 4.5.10)

The form (4.5. 11) is convenient because it allows one to introduce the values of

the maximum shear stresses which are given by:

2 (4.5.12)

It follows that:

2MW'Vý 4-'r--' (4.S.13)

where T, is the octahedral shear stress which operates in the particular planes

whose normal is directed at 540 44' to the principal axis. The name arises be-

cause that part of the plane which lies completely in the octant of pure tension

forms one face of an octahedron. Comparison of (4.5.11) and (4.5. 13) shows

that

3 for the given material. (4.5.14)

SLice simple tensile strength is a more familiar quantity than octahedral shear

strength, the geometry of the yield surface will be described by the former param-

eter (& 67 psi) coupled with the hydrostatic tensile strength. The surface repre-

sented by (4.5. 11) •is best visualized after making the following transformation:

1 =-Y" o (4. S. 15a)
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rt÷.+ va qN÷ cr,8-- o;(4.5. 15b)

ru•ing fg- (4. S. ISO

Substitution yields:

548wL(4.5. t6)

These equations state that the distortion yield surface is a right circular cylinder

whose radius is 81.6 percent of the simple tensile strength, and whose a-is (the

hydrostatic vector) is normal to dilatational yield surface. The length of this

cylinder is determined by Equation (4.5.15a) with r a w* & 3500 psi, and at this

point, the cylinder is capped by the dilatational yield plane. The intersection of

the cylinder with this plane defines a circle on which failure occurs simultaneously

by dilatation and distortion. Any stress field which lies inside the cylinder but

outside the dilatational yield plane will produce failure by dilatation. Any stress

field which lies outside the cylinder but inside the dilatational yield plane will

produce failure by distortion. Finally, any stress Ifield which lies both inside

the cylinder and the dilatational plane will be sustained by an elastic body. All

these statements are depicted in Figure (4. 12), which shows a two-dimenqional

carpet of the yield surface. Because of the form of Equations (4. 5.4) and (4.5.5.),

the geometry of the yield surface is exactly the same in normal strain space.

If. in addition to the critical value of the hydrostatic tension, it were

possible to assign a similar value for hye.,costatic compression, then the cylinder

would be capped by two dilatational yield surfaces, one in octant 1, in which all

stresses are positive or tcnsile, the other in octant VIII. in which all stresses

are negative or compressive. The failure mode and stress quality in all octants

may be denoted as follows:
number of positiveOctant ai 92 a3 possible failure modes n brossts

______ 3__ stresses

+ + + distortion and/or ten- 3
sile dilatation

II + ÷ -distortion 2

III + - + distortion 2

IV + - - distortion £

V - + + distortion 2

VI - + - distortion I

VII - - + distortion I

VIII - - - dilatation and/or com- 0
pressive dilatation
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By virtue of equivalence of the three principal axes, it is noted that there are

"four categories of octants characterized by the number of stresses of the same

sign. Thus octants ni. M and V are similar, and octants IV. VI, and VIn are

similar. This means that, for an isotropic material, only four octants need to

be tested. If in addition, it is known that the compressive properties are the

same as the tensile properties, then only 2 octants need be tested. On the other

hand if the material is anisotropic, or if anisotropy is induced by virtue of

straining, then it will be necessary to check six octants for an orthtropic mater-

ial. and eight for a completely aeolotropic material.

It must be noted here, in passing, that stress-induced anisotropy pre-

sent& a real problem in the case of filled rubbers. Consider, for example, an

internally pressurized hollow cylinder with the radial axis in compression and

"the tangential axis in tension. Because of the dewetting of the binder in tension

its modulus and Poisson's ratio in the tangential direction will differ from those

in the radial direction. Thus. orthotropic behavior is indicated and at least six

octants must be checked.

Other failure criteria. Suppose now that the given material fails by

the Tresca condition, which is assumed when the maximum principal stress dif-

ference reaches a critical value. N•ote that this reduces the dependence of the

failure criterion from three stresses in the energy case to two, namely, the

largest and the smallest. A logical check on such a theory is to determine

whether the failure criterion depends on the value of the intermediate stress.

Taking r. > a.> -,k. the maximum stress difference or maximum shear

stress is given by - 1 (4.5. 12), A logical extension of this theory was pro-

posed by Mohr, who suggested that

Proceeding as before, it is easily shown that the condition (4.5. 12) Jefines six

planes which intersect to form a hexagonal prism, which is precisely inscribed

in the strain energy cylinder. In the case of Mohr's condition, the six planes

become six curved surfaces, the elements of which are generators of non-circular

cylinders. It is readily observed that the mathemat.cal analysis connected with

such conditions leads to insurmountable difficulties. Suffice it to say that the

* :Hencky condition is usually an adequate approximation, even when physics dictates

that the Tresca or Mohr condition represents reality. Similar surfaces develop

'i' t
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in normal strain space, only the values of the parameters are different.

Finally, let us suppose that the given material fails when the maximum

principal stress or maximum principal strain reaches a critical value. In this

case, the failure criterion in stress space is expressed an:

or ' •< a (i, j, k, permuted randomly) (4.5 .18)

This condition defines the position of three orthogonal planes which intersect the
principal stress axes at 4T and intersect each other to form a cube. I" there is
no critical condition for compression, the faces of the cube will extend to infinty

in the octants U through VII. A critical value of the simple compressive stress

will serve to define three other planes which will intersect in octant Vm to render

the cube finite. In this case the center of the cube will have coordinates

+ - where w is negative and larger in magnitude than wT.
Again, the same geometry but different values of the parameters will obtain in

the normal strain space.
It is clear that if the hydrostatic yield surface intersects the hydrostatic

vector at a distance greater than •'7 irT, there is no possibility of dilatational

failure, whereas, if r< r T. then the intersection of the hydrostatic yield surface

with the cube defines the line element on which both types of failure may occur

simultaneously.

Coupled criteria. An interesting situation occurs when the two failure

criteria are coupled. Suppose, for example, that the critical value of the dis-

tortion strain energy is some function of the mean hydrostatic pressure. Since

the point in normal stress space corresponding to the mean hydrostatic pressure

lies on the hydrostatic vector, the coupled criterion suggests that the radius of

the circle which intersects the cylindrical distortion energy surface is a function

of the position of this point. Thus the general failure surface based on coupled

criteria will no longer be a cylinder but will still be a figure of revolution with

varying circular section and with figure axis still on the hydrostatic vector. This

may be stated analytically as:

(4.5.19)

It is readily observed that by allowing the radius of the figure to increase

as the position on the figure axis approaches the origin, the figure can be made
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to approach a cuboid. Thus, by the simple expedient of coupling the failure crn-

teria, the condition of failure by maximum principal stress can be approximated.

The situation may be summarized as follows. The Huber-Hencky octa-

hedral shear stress criterion defines one limiting case of failure which is a right
circular cylinder capped by the dilatational plane. The maximum principal stress

criterion defines another limiting surface which is a cube, possibly intersected

by the dilatational plane. The actual surface for any given material probably lies

somewhere between these extremes. The problem is to define the extent of coup-

ling.

For pure elastic materials, it makes no difference whether the failure

surface is cast in normal stress or normal strain space, as long as the elastic

laws are known right out to failure, even if non-linear. Obviously. the values of
the yield parameters in strain space will differ from those in stress space. And

since one should be interested in introconverting one set of data to the other.

Poisson's ratio looms as a very important parameter. Thus the need exists for
accurate experimental determination of this quantity under all conditions.

This may be seen as follows. First invert (4. 5. 1) as:

2M , at (4.S.Z20a)

,- 2AeC 1 or (4.5. 20b,

For the case G.>L & , (4.5. 20b) shows that r. r. wk. Therefore the

maximum principal strain failure criterion (fb:eT) is associated with. in stress
space, the criterion:

(4.S. ZOd)

This is the equation of a plane, which intersects the principal axes at
-.- MC , Z-C5! in octant IV. Because of the equivalence

1-V V AV
of the principal stresses, there are two other congruent planes which intersect
in octants VI and VII. The three planes intersect at a point which lies on the

hydrostatic vector at a distance IT from the origin. Thus the yield sur-•; h dros ati vec or • a istace I- 2V

face in normal stress space associated with the maximum principal strain criter-

ion is a trigonal pyramid (Figure 4.13), whose faces extend out to negative infinity.
The slopes and intercepts of these faces depend strongly on the value of st.

ilS
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4. 5. Z Mechanical procurement of failure data.

Aside from the obvious point of experimentally verifying that a given pro-

pellant under consideration is linearly viscoelastic in the first place, failure

analysis indicates that testing need be carrien out in sufficient octants to enable

one to decide whether the material is anisotropic or not. In addition, testing

must also be carried out at various points within an octant in order to pin down

the position of the.failure surface within the given octant. Since, in general.

this can involve a prohibitively large number of tests, it is expedient to reduce

this number by a symmetry argument. Assuming that the propellant material is

isotropic, it follows that a given deformation field is insensitive to any ordering

of the principal axes which border on the given octant. This me ans, for example.

that interchange of the x and y axes, in any test in which these axes are the prin-

cipal axes of the specimen, produces no effect upon the mechanical parameters

that characterize the stress-strain field. The same argument holds even if

anisotropy is induced as a result of applied strain. It only fails when the material

is anisotropic to start with. It follows that only one-eighth of any octant bounded

by two of the three coordinate axes and a third axis collinear with the hydrostatic

vector need define the region within which testing can be carried out. This can

be seen very nicely by referring to Figures 4. 14 - 4. 23. The set of four testr--

biaxial tension, hydrostatic tension, parallel-plate tension, and simple tensit.r

(Figures 4.14 - 4. 17)--form a sequence which defines the trace of the yield sý.

face in the plane defined by one of the coordinate axes and the hydrostatic vector.

In order to complete the definition of the position of the yield surface, it is merely

necessary to determine the trace in the plane bounded by any two of the coordinate

axes, for example, the same plane in which the biaxial test is depicted in Figure

4.14. And finally, an additional check may be provided by tests at some intermed-

iate points. It is believed that the sequence of tests outlined in Figures 4.14 -

4. 17 is sufficient to pin down the yield surface within the extent of variation that

ordinarily accompanies failure testing in any one octant.

The remainder of the sequence of Figures 4 18 - 4. Z3 shows the mapping

of stress vectors produced by tests in other octants. The sequence was chosen

(cf below) from the total possible number of combinations of positive/negative/and

zero stress components; but %%- -. numbered in a fashion better suited to the discus-

sion of mapping within or.tant L

. . + triacial-hydrostatic tension - octant I

+ + + triaxial-parallel plate tension-octant I
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+ + 0 biaxial-planes I I. 1 IV. I In•

•-+ + torsion-pure shear- octants 1. VII, III. V.

+ 0 0 uniaxial-tension-along each positive axis

+ 0 - torsion stretch - planes U1IIIl. II VI. Ill VI, H VII, IiiVII,V7 VII

+ - - torsion compression - octants IV. V. Vi

0 0 0 identify-coordinate ^Tigin

0 0 - uniaxial-compression-along each negative axis

0 - - biaxial-compression-planes V VIII, VI VIII, VII VIII

- - - triaxial-hydrostatic compression - octant VIII

V - - - triaxial-parallel plate compression - octant VIII

The tests chosen to generate the various mappings of the stress vector are those

in common use today. The introduction of other types is primarily a question of

experimental ingenuity.

4. 5. 3 Unfilled non-viscous elastomers-large strain effects.

*. In Section 4. 2. 1, the character of the stress-strain curve in simple tension

was discussed for natural rubber vulcanizate. Apart from pointing out that the

strain at rupture is large, nothing was said about the failure criterion. On the

other hand, nothing was said .1bout the effect of large strains upon the nature of

the failure criterion in 4. 5. 2. It is important to tie these two sections together

in order to evaluate realistically the failure of unfilled elastomers, and then

filled elastomers. or propellants.

Let us recall that many unfilled elastomers or continuum rubbers are

generally well characterized by incompressibility, and a strain energy function

of the form (4.2.9). Associated with this function is a stress-strain law of the

form (4. 2. 2). Let us now calculate the various failure criteria with the aid of

these expressions. Denote alternate values by an asterisk and order the sub-

scripts in the fashion X. > X. > or ri.> a.> k"
J

From (4. 2. 2) it follows that the ultimate true stress is given by:
a

where ] is determined from the condition

* Kit= 4
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The maximum of the three values among0 . j. Ti r is appropriate for a criterion

based on maximum principal stress. If maximum principal stress difference is

chosen, one must write-;

Note that this may be numerically greater or lesser than the maximum principal

stress depending whether W is positive or negative.

The maximum principal strain difierence derives from (4. . 23) after

division by twice the shear modulus, using the fact that the Murnaghan (or finite)

strain is given by

(4.5.24)

VL NIL(4.5.25)
_ _ , .

This latter quantity is greatur than the maximum principal strain for

The expression for the mean deviatoric stress may be simplified by

introdu:ing (4.2. Ia,bc) to yield:

= ± ~> :)'~~:-~ :- =.I'~I~31~ (4.5.26)

Note that this quantity is greater than Wdistm - ,'-3) +or :1,> 2 414lg =I

The mean deviatoric strain derives from (4.5. 26) after division by twice the

shear modulus. All these results are summarized in Table 4. 1. In particular.

the formulas for uniaxial and homogeneous biaxial stress fields are also tabulated.

Some comments regarding Table 4. 1 are in order. First of all, note

that for the uniaxial stress field all the yield criteraawith the e-tceptioD of the

maximum principal strain and distortion strain energy, are proportional to the

same factor (kZ k- ). A similar situation holds for the equal biaxial tension

case, except that the factor is (%Z - X-4). In both stress fields the ultimate

stresses are simply equal to the ultimate strain times twice the shear modulus.

Second. if the strains are large, aPl of the criteria are proportional to X . One

might suspect therefore that the problem of defining an ultimate criteria for an

incompressible elastomer is straightforward: measure X at yield (or fracture)
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in any kind of stress field. and as long as X Br3 the error made in failing to dis-

tinguish among them is of the order of 5 - 10%. If. however, the fracture strain
is stoall, of the order of 20 to'30 percent as it may be in actual rocket motors,

the criteria will depend upon the stress state. The similarity of the strain pro-

portionality factor for many of the criteria implies, however, that it may be sud-
ficient when designing experiments to contemplate testing the hypothesis in only

three of the original seven of Table 4. 1, namely (i) mean deviatoric stress

(stress distortion), (iH) distortion strain energy (strain distortion), and (iii) max-

imium principal (normal) strain, as suggested earlier in this section.

TABLE 4.1

Uniaxial Equal General
Yield Criterion Stress Field Stress Ficld Stress Field

i maximum principal strain NI-I ,--

a~cimur strain difference K-l)

:3t mean deviatoric strain -2- (j -- ) --••-:- - 32

4 maximum principal stress 4 ( (W- ) i

•.6 :mean deviatoric stress; m O\`- -k) A •(N -- • AA = a"

7 distortion strain energy (0-A'.--3) -•-(2:-3-) -( ,-3) -

As an illustration of how one might predict the ultimate values of the yield

stresses and strains in equal biaxial tension and pure shear from uniaxial ultimate

strain data represented by X*. consider the following cal-ulation based upon a

maximum distortion strain energy criterion.

From equations (4.2. 1a), (4. Z. 2) and (4. Z.9) we have

A -(4.2.2a)

- =_ (4.2.9)
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where Xk- is known from experiment. Now for an equal biaxial stress field, using

a subscript b, the first invariant Is

1 ,"- 2 .%*-I- (4.5.Z7)

whereupon equaL',-g the strain energies using (4.2.9) and the respective values of

it. find

2 b

"One root i: obviously

-I-

which corresponds to biaxial compression and is extraneovu. The other root is

__________I I

For large %*, we have. Xb - k* /-41. which is a useful rule of thumb for pre-

f dicting biaxial failure (large strain) in a rubber when the ultimate uniaxial strain -

is known. Similarly, the associated stress ratici can be calculated as

On the other hand, f•r small strains such that the maximum value of the strain

energy is smlil enough so that X may be approximated by 1 +9, then it follows I -.

" that e b e*/2. and b a uniaxial at fracture.

For the second case. pure shear generated in a material by applying the

extension field

-|

)%=.I ; )= As (4.5.29)

leads to

W~~ ~ AM +_2, A __%-1-Z X. -2 A (4.5.30)

For large (

x, - X(4. 5.31)

-- (4.5.32)
NO *

whereas if the strain.z are small

_ _$ _ (4.5.33)
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K •(4.5.34)

Returning to specific consideration of a particular unfilled elastomer. L_

consider the fracture characteristics of gum rubber. The ,roperties of the

simple tensile curve at yield and at rupture are summarized in Table 4. 2 along

with some predicted and ineasured values obtained for other stress distributions.

In connection with these properties, a few comments ian be made..

The extension ratio at yield is taken to be 6 on the basis of the discontin-

uity in slope in the curve of Figure 4. ;:. The associated r, W and rd are tabu-

lated. For large strains, it is necessary to adapt a definition of the mean devia-

toric strain based on finite elastic theory. It is convenient to work with Murna-

ghan' s definition of strain:

.E-1.
-2 b.(4.5.35)

so that

~ * (4.5.36)

TABLE 4.2

Fracture Properties of an Unfilled Gum Rubber Vulcanizate
22 2

a 1.76 kg/cm2 E a 5.28 kg/cm . I kg/cm , 14.22 psi)

"Table I Homogeneous Heterogeneous
Property Ref. Line Failure Mode Simple Tension Biaxial Tension Triaxial Tension

k yield 6.00 *4.30 "'6.82 6.00

S-r 4 1 12.0 7.58 12.0 4.85I -

Wd 7 29.9 29.9 69.2 29.9
'rd 6 i2. 0 7 . 58 12.0 4.8 1r

ed 3 17.9 17.9 44.9 17.9

k I .racture 2.0 - - -

a 3. 32.0 58
W d 7 62.4 62.4 - -

•'d 6 32.0 - 320
Cd 3 ?.9.2 - I -e d 3

* energy criterit.-
+ deviatoric str :r criterion
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Now define the strain deviators and mean deviatoric strain bor

e. E (4.5.3?)

e,= 3/,. (e,z-. e,- + e-5); = .. - 3 .1 (4.5.38)

after some alg6braic manipulation. This is the last yield parameter tabulated.

Of the five chosen, most likely candidates for the yield criterion are

W. rd and X. as mentioned earlier. To date, the data necessary to place these

quantities on a firm experimental basis have not been procured. In the mean-

while, some predictions will be made for biaxial and triaxial tension. Compari-

son is established with the only available multiaxial data (4.20)

In the first column, under the heading of biaxial tension, it is assumed

that rupture occurs always at a given value of the strain energy, approximately

30 psi. Notice that it takes less biaxial stresb. and of course, less biaxial :train

to effect yield and presumably rupture under this assumption. If, on the other

hand. the mean deviatoric stress is chosen for the yield criterion (second column).

then the sample in biaxial tension fails at the same stress level as in simple

tension, but at a much higher strain energy level. rhe calculations are carried

out with the aid of (4. 2. 2).

The case of triaxial tension introduces some new features into the picture.

In the first place, a truly incompressible material cannot deform under triaxial

tension unless at least one lateral dimension is allowed to strain. This can be

accorrmplished for example by bonding a cylindrical sample between two rigid steel

plates. In this case, incompressibility of the specimen is preserved by necking

of the sample. Gent and Lindley(4.20) subjected such poker-chip specimens to

tension and found that the stress-strain curve is linear up to a point at which the

sample suddenly develops an internal void; they term this the triaxial yield point.

They show, to a good approximation, that the average applied stress level

S' (kg/cm ) at which the void occurs is giver. by (4.4.5)
S• E e' I I-1- a - ! - .L-i

-- '2 = (4..39)-

where e' is the strain level at yield

a is the radius of the tablet 1cm)

h is the thickness of the tablet (cm)

pi, is the maximum hydrostatic pressure acting on the yield
surface just prior to yield (kg/cm2 )
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For samples characterized by h/a 0 0. 3, they measured the yield stress for a
number of rubbers and found experimentalyr

"=, o.so + o.95 a 0.59 (4.5.40)

by (4.5.39), so that

o.a.*5o.,34. e (4.5.41)

"Insertion of the tensile modulus of 5. 28 into (4. 5. 41) yields the tabulated

value of 5.81 kg/cm for the indirectly measuted triaxial stress on the yield

surface just prior to yield.

It is possible to calculate how the high triaxial stress originates. Gent

and Lindley assume that a tiny microscopic void is present to start with at the

center of the disk. They assume further that the void is stretched radially like

a spherical cavity, and they compute the strer PE as the point at which the
cavity becomes infinitely large. This treatment can be modified for two reasons.

First, when the cavity has grown large, the radially symmetric stress distribu-
tion will become distorted. Moreover, from the start the cavity is not being

elongated equally in all tnree directions. Actually. it may be more like extension

in the direction normal to the flat specimen with ±ero displacement in the two

transverse directions. Since such a displacement field is impossible for a cavity

in an incompressible medium, however, it may be assume d that the cavity is a

small cylinder, lying with its axis perpendicular to tVe pull direction, and being

stretched radially with its axial length held fixed. This will be closer to reality

than the case of the spherical cavity. The solution of this problem is a classical

case in finite elastic theory{4" 14) the details of which need not concern us here.

Suffice it to point out that the radial stress in the medium around the cavity is

"gi.:en by

JA (4.5.42)

"where the bar over the streis symbol indicates true streas and

X. is the radial extension ratio • -- -- r,

a is the radius of the undeformed cavity.

Far away from the cavity, X -. I and the strest approaches FP.

I• ,
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"=LAS+ (4.5.43)

Likewise, the tangential stress at the surface of the cavity is given by

- (4.5.44)

which, for )..3r3, behaves exactly like simple tension; this checks the facts be-

cause the surface of the cylinder is assumed to stretch tangentially, but not

axially. On this basis, we choose the yield value for X a to be that in simple

tension, namely 6. 00. Substitution into (4.5.43) yields for P1r a value of -
2

4.85 kg/cm (tabulated under the heading r at yield), in excellent agreement

with the measured value. Furthermore, it is to be expected that the measured

value will be higher since it is a measured break rather than yield.

The first strain invariant under the radial stretching of the cylinder is

given by -

*, * i*-r." (4.5.45)

so that using (4. 2. 9)

"W-" ('4' A 4-y -3) =-- o.83(34.o =29.9 (4.5.46)

Thus the strain energy remains constant as in simple tension. With admittedly

only fragmentary evidence it appears that it may not be a poor assumption to take
.: Md as the yield criterion. In this particular case, the criterion slates that this

d2
"* particular gum rubber vulcanizate cannot sustain more than 30 kg/cm or 425

3
* " in-lbs/in of strain energy density without yielding. It is suggested. however.

that similar experiments to those of Gent and Lindley in both tension and com-

pression be expedited to provide the data needed to define the yield criterion.

illustrative example: On the basis of the suggestion made in the previous

section, the strain energy criterion will be tentatively adopted in order to demon-

strate the use of a failure criterion. In the strict sense of the word, finite elastic

theory should be used, but since not many design engineers have familiarized

themselves with the intricacies of this treatment, an anaiysis based on infinitesi-
rmal theory will first be presented. We consider the classical case of pressuri-

zation of an infinitely long hollow bonded cylinder in an elastic case. Since the

nomenclature from here on is familiar, interjections will be sparse. Superscript

____________________ -- e _____________
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bar refers to properties of the metal case. Using (4. 2.9) in the form

WA -&;A + •.(4.5.47)

with p as the internal pressure, one finds upon the appropriate substitution that

at the inner surface

6A I+ /- 2V' + ((/b)t ( -3 (4.-5.48)

where • "1l-(-2V',] is the effective case rigidity.

For an infinitely stiff case, for example, and typical large web fractions,

•.,. S- ofW (4.5.49)

which upon using Wd = (IL/2)(Il-3) from Table 4. 2, gives a maximum internal

allowable pressure of 170 psi. Figure (4.24) shows how Wd .aries with Poisson's
ratio for the particular case when 4= 0.004. a/b a 0.25 and p - 1000 psi. Note

that Wd increases very rapidly as V falls below T. The need for such a large

strain energy will in part be eased by relaxation effects in the propellant. But

a very important reason that results in these high values lies in the error made

by assuming small strain theory out to rupture. The error made is akin to as-

suming that the initial slope of the tensile curve remains constant to rupture.

Thus the value of 900 psi is not to be treated as universal, particularly when

large strains are involved. On the other hand, calculations of this sort based

on small strain theory do become more meaningful at low temperatures. There

the stress-strain curve does become linear, while the ratio of IL to 7 increases,

as does the relative case rigidity effect.

Because it is extremely important to be able to apply the strain energy

criterion to practical cases, the finite elastic analysis of the infintely long

internally pressurized cylinder is carried out in Appendix 4.3 in order to show

the type of error which may occur when using small strain theory. The analysis

is an extension of the results that were presented for the cavity, and in order to

keep it fairly simple, it is necessary to assumrie incompressibility. The analysis

can be carried out for a compressible material with a bit more difficulty, but for

present propull-Ant mraterials, a- representative strain energy density function is

not available.

The result given for the assume d incompressible material is
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• . w,, = ~~2 [(a•'b)P-t + PA 'b' (4.5. 50).-"

which is the large strain analog to (4.5.48). For small case rigidities.

1•= (b•'-' (4.5.52)

and it is easily seen by comparing (4.5.49) and (4.5.52) that the energy increases

quadratically with pressure in small strain theory, but for large strains ap-

proaches a linear asymptote in pressure.

Thus this illustrative calculation demonstrates that if the grain design is

such to permit large strains in the propellant, much lower demands will be placed

upon the allowable strain energy than were indicated by. for example, the 900 psi

*" figure obtained by extrapolating the small strain theory.

4.5.4 Filled non- viscous elastorners

In returning now to the practical problem of rocket grain analysis, it is

unfortunate that so little can be said as to how far the conjectures of the previous

section can be ei -d. It is clear that fracture prediction will not be nearly

as simple For higi - -Lted elastomers or propellants. since the materials are

compressible and may yield at strains as low as 20 percent (X a 1. 20) where as

can be seen from T--able 4. 1 the criteria depend upon the stress state. Until more

experimental data becomes available, it will be necessary to rely upon a mixture

of continuum analysis and engineering judgment.

Possible fracture criteria: It has been suggested that in the case of

unfilled elastomers. the distortion strain energy adequately represents the onset

of fracture or yield. In the case of filled elastomers, two factors complicate

the situation; one deals with the cutting of the polymer chains on the sharp edges

of the filler engendered by the high local stresses around the particles, the other

is the generation of voids as the binder is pulled away from the filler. Simple

modificationa to the strain energy function to account for these factors can be

proposed as a point of departure for future work.

The first modification deals with the cutting of polymer chains. This

inference is borne out by constant strain test data (i) as strain is increased, time
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to rupture decreases, (ii) at a given strain, the modulus decreases with time.

Thus. from stress relaxation studies at various strain levels, it is possible to

correlate the modulus with some function of time and strain level and also

temperature. The strain energy criterion now becomes:

w =±4(.t?~a-)EzI3~I(4.5.53)

Secondly, the void volume must be accounted for since the strain energy

is defined per unit volume of unstrained material. If P is the void fraction en-

gendered by pullaway at a given X, then (4.5.53) becomes

2 (4.5.54)

where W is now measured on the sample including voids. Measurements of

void volumes can be done microscopically on thin films.

Until more definitive experimental data becomes available no attempt will

be made to present an example of typical calculations using actual propellant

material properties. It will be necessary to assume that the behavior of filled

elastomers is sufficiently interpretable by urnfilled elastomer analysis to permit

stress and strength analysis calculations in propellant grains, and to rely upon

engineering judgment in assessing the results and their pertinence to the design

problem.

4.6 Cumulative Damage Theory

In any discussion of failure theory for viscoelastic materials, it is neces-

sary to show the correlation between experimental data accumulated 't constant

strain rates, and actual test and environmental conditions wherein the strain rate

may change slowly, rapidly or variably during the time under consideration. In

other words one may pass from one failure surface to another as the strain rate

changes. Pending the determination of more precise procedures, it has been

proposed that one may use a cumulative damage concept similar to that used in

metal fatigue analysis, in order to account for the amount or percentage of re-

sistance to failure used up as the strain rate takes on various values during the

loading history.

4.6. 1 Review of the Miner Law

By way of review, it may be recalled that Miner (4.44) investigated the

--------------
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use of a cumulative damage criterion in aluminum, where the basic concept was"

simply to add together the relative percentages of damage at each stress level

(based on total number of cycles to damage at each stress level) until a hundred

percent damage was attained. Others(4 .45) have extended this concept to other

metals and loading conditions in a more general (non-linear) way.

Consider for example, a specific illustration where the usual fatigue

criteria for metals of N cycles to failure at a constant stress r* (Figure 4. 25)

is inappropriate. Such a situation often occurs when the loading spectrum is

not a constant stress. Hence while one may expect one million cycles before

failure at say 50.000 psi stress, suppose the applied stress is halved to 25.000

psi after only a half million cycles. The natural question then arises - how many

more cycles will the specimen withstand before failure? The usual approach has
been to consider the problem from the standpoint of a cumulative damage. In

the foregoing example one would say hail the "life", say N bad been
so 50000' a be

used up when the stress was reduced. The specimen would then be expected to

withstand half the life. i.e. 1 N2 5 , 000' at the reduced stress. The total life

for this particular assumed spectrum would therefore be 7 (N5 0 .0 0 0 + N 25 , 0 00 ).

The general formulation for a spectrum of M loadings or. (i 1, 2, 3 ... M),is

1L (4.6.1)

where the life L • 2, N.. N. is the number of cycles at the stress r.. and N
L.'1 I I1 R.

is the number of cycles to rupture at the stress r.. In the simple example

chosen, a linear cumulative damage law was assumed; hence n a 1.

4.6. Z Cumulative damage concept for rate-sensitive media.

Based upon the preceding concept, it is proposed to inquire whether or

not some similar law might be pastulated for polymers. -. hose time dependence

analogously to cycles is associated with strain rate. Smith has found a correla-

tion between ultimate strain and strain rate, with tempc-ature as a parameter

(Figure 4. 26), for specimens tested in uniaxial tension at a constant strain rate.

For most practical applications the stram rate varies during a test, particularly

if the applied load or pressure is changing. It would therefore be desirable to

be able to associatc the failure of specimens subjected to a varying strain rate
to that at constant rate for which data. e.g. a Smith curve, has been obtained.

Suppose now that constant temperature conditions are a.sumed for

-*simplicity, and write

-. ---- --- - o
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with

Lai-ki' Lai- (t4.6.21 '""

where t i and tRi are the time the specimen is held at the strain rate 4, and the -"

time to failure at .i respectively. T is the total time to rupture for the spec-
trum of strain rates i i(i = 1. 2. 3.... M). Passing now to an integral form of

the linear cumulative failure law.

a t(6)
( (4.6.3)

from which T is to be determined for a specified spectrum t(4) and Smith curve

tRle).

As a practical matter, it is often inconvenient to work with the times

themselves. Actually, given

e =r (,XL,•) (4.6.4)

from an analytical viscoelastic strain analysis, then by differentiation

(4.6.5)

or inverting

(4.6.6)

alternate forms are possible. For the constant strain rate failure data (Figure

4.26). eR = 4tR' so that

(4.6.7)

"where an analytical representation of Figure 4.29. tR x ta(4 ), is required i.

numerical integration is to be avoided. The alternate scheme in (4. 6. 3) is to

replace dt by (8t/al)8 and work completely in the rate space.

As an example to illustrate the mechanics of applying the postulate.

assume,to s- -iplify the calculationsthat the actual strain response of the par-

ticular geon. -ry under study is simple creep (Figure 4.27). viz.

e = .(- e") (4.6.8)
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where e 0 is the initial strain. From (4.6.8) however the strain rate, by differ-

entiatio:, following (4.6.5). is

- e-- t- i e (4.6.9)T

where 4o is the initial strain rate. Now by (4.6.6) one has

(4.6.10)

and

•'r. "1:(4.6.1i1)
ZE 'E

Turning now to the Smith curve, but replotting the data. (Figure 4. 28) in

the form t a tR(i) %%here the ultimate strains e are indicated by ha~sharks
on the curve, one proceeds to curve fit the data. For illustrative purposes it

is sufficient to approximate the &ctual Smith curve by the dashed line

2-2

This form incidentally may be recognized as approximating the actual failure

data by a constant rather than rate dependent ultimate strain -- in this case

0. Z.
With the assumed viscoelastic analysis yielding (4.6.10) and (4.b. 11).

and with an approximate failure threshhold given by (4.6. 12). the cumulative

damage pLstulaticn gives simply

1~~ ~ ~ dei- T*'j~--)d (4.6.13)
c-

and hence

T- (4.6.1•4)

so that failure would be anticipated when the initial strain rate E.Me.I- duced

by the amount .-/-r . For a -* . the characteristic relaxation say i

second and E = 0. 2. failure .hould occur when the initial strain rate is reduced
by 0. 2 in/in/sec.

The life is then found to be proportional to the c.haracteristic relaxation
time. viz.
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"T = •,t L--(e..T.•=(4.6.15)

While certain liberties have been taken in approxina ting the failure data

in order to demonstrate the means of carrying through the estimate of failure

time, the steps are believed to affect the results in degree, not in principle.

Indeed, given an actual viscoelastic strain analysis, the failure hypothesis could

be'tested by numerically integrating (4.6. 3) using the actual Smith type data for

the particular material involved.

There are, however, fundamental point't still to be resolved; first, the

form of the cumulative damage criterion, and second, its pertinence to combined,
rather than solely uniaxial tensile, strain fields. With regard to the first, one

might postulate an average value of t(i )/tR(Z) over the strain rate range e. to

equaling unity. Also S. R. Valluri has suggested as an alternative, a cumulative

energy correlation based upon integrations of 8 at(! rZ), inasmuch as he observes

the Smith data straightens out well on log-log paper when eE is plotted versus tR.

"While it is too early to make definitive statements regarding the application

of cumulative damage concepts to elastomers, certain initial experiments have

not disproved its applicability. L. D. Stimpson has performed one set of pre-

"liminary unpublished tests using polyurethane tensile specimens at the Jet Pro-

pulsion Laboratory in the following way. '•:.::pose two different samples are

strained to failure at constant strain rate, ý'i.e at a higher rate than the other

- (see inserts).

To

AA

0M"

C-
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Now suppose instead that the first sample had been .strained on the Instron testing

machine at its rate. RV. only part way and then strained the remainder of the way

at the higher rate, R2. as follows.

LOwuM ItAve .. IG04af WATU

Linear accumulation based on strains then would be

+-- - (4.6.16)

whereas based on energy = zrd6 u areas under curves would give

A, -(4 6. 17)

In order to examine the extent of correlation on either of these two bases, several

samples have b-en run at various strain-rates and some have been run with mid-
path changes in ztrain-rate. Figure 4. 29 is a typical run in which three different

strain-rates were used.

In spite of the few tests made with noticeable scatter in the results and

certain shortcomings in the technique of changing rate, the results show that

accumulation based on either strain or energy appears feasible. It is felt that

there will be more means for determining the best basis of accumulation at

strain-rates higher than feasible on Instron equipment. Runs at lower tempera-

tures and moderate rates on an Instro.n may also produce a similar result. Cer-

tainly m.any more runs need to be made in order to account for the statistical

variation in propellant specimens.

Table 4. 3 presents the results from some of the preliminary tests show-

ing the values obtained upon accumulation based on strain and energy. A value

of unity represents an accurate cumulative result, whereas spreads of values
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are due, in part, to sample variation. A slight bias above unity seems to exist

and has been found to be even larger in the latest runs which suggests non-linear

accumulation may be more-accurate. Roughly speaking, the initial sasnple var-

iations are at most about + 10% whereas the cumulative spreads are about + 20%.

The actual standtrd deviations are shown and abouL dotZle in the cumulative

process. This increase in spread is expected and corresponds with tha" found

in metal fatigue tests.

S./ -In order to make Table 4.3 more understandable, consider the first

accumulation run, no. 1878. Preliminary tests made separately at 74% strain/

min and at 7.4% strain/main all the way to failure resulted in mean values for

strain to break of 64% and 41%, respectively. In run no. 1878 a specimen was
strained at the first rate until it had reached 32% elongation cr half its potential

strain. Then it was continued at the second (lower) rate until brealh which was

an additional 24.5% elongation (based on original length). Performing the acca-

* mulation based on strain,
329/ 24.s%
& 4 41 = 1.10 (4.6.18)

* ,4 * 4 t /.,

which appears under the total accumulation column. The energy accumulation

was performed in a similar way with 53% of the potential energy occurring during

the first strain-rate and 49% during the second (based on total energies at the

respective constant rates from previous tests taken all the way to break). These
"energy percentages are tabulated immediately below the strain-rates in the table.

In another separate series of unpublished tests, McCullough

of The Thiokol Chemical Corp. has essentially repeated the experiment using

a polyisobutylere-acrylic acid propellant. His degree of correlation has also

been encouraging although not conclusive. He obtained 15 to 20 percent deviation

when predicting mixed rate results from constant rate data, with the standard

deviation being somewhat smaller for a strain rather than energy correlation.

Should subsequent experiments establish that some sort of cumulative

darrage hypothesis has quantitative merit in simple examples, it would then be

appropriate to attempt requirements in the form of non-linear accumulation.

variable temperature situations, and combined stress or strain fields.

4 -



TABLE 4.3. CUMULATIVE DAMAGE

Run No. Strain Rates (in/in/min) Total Accumulation Standard Deviatio-ax
% Accumulated at each S. R. Strain Energy Energy Initial

(Energy Basis) Basis Basis Basis Dita

let 2nd 3rd 4th

1878 .74 .074
53 49 1.10 1.02

1879 .074 .74
46 51 .97 .9?

1880 .74 .074 I
51 36 .88 .87

1881 .074 .74 |
43 85 1.38 1.28 0. 14 0.07

1882 .74 .074
20 66 .84 .86

1883 .074 .74
14 83 .99 .97

1884 .74 .074
t9 77 .97 .96

1955 .037 .37
41 64 1.11 1. 05

0956 .037 .37
42 68 1.14 1.10

1957 .37 3.7
53 30 .79 .83

1958 .37 3.7
41 72 1.41 1.24 0.18 0.08

1959 .037 3.7
19 105 1.21 1.13

1960 .037 3.7
13 64 .78 .77



-252-

TABLE 4.3 CUMULATIVE DAMAGE (continued)

Run No. Strain Rate (in/in/mrn) Total Accumulation Standard Deviations
Accum•lated at each S. R. Strain Energy Energy Initial

(Energy Basis) Basis Basis Badis Daza

Ist Znd 3rd 4th

1961 .037 .37 3.7
14 30 70 1.20 1.14

1962 .037 .3? 3.7
13 31 54 1.02 .98

1962~~~ 0.50 311011: 0.08
1963 .0.7 .37 3.O0

28 so 34 1.09 1. lz

1964 .037 .37 3.7
44 32 27 .97 1.03

2093 .0074 .074 .74
19 .,? 54 12

2094 .0074 .074 .74
11 30 67 1.08

2095 .0074 .074 .74
23 48 5• 1.22

2096 .0074 .074 .74
17 48 63 1.18

2097 .0074 .074 .74 7.4 0.7 0.07
5 8 19 87 1.19

2098 .0074 .074 .74 7.4

3 7 18 1o0 1.29

2099 .0074 .074 .74 7.4

1 6 21 8a 1.09

2100 .0074 .074 .74 7.4
8 9 19 77 1.13
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'1

+ +2

+

Fig. 4. 14 - Biaxial tension Fig. 4. 15 - Hydrostatic tension

+ 4.

Fig. 4. 16 - Parallel-plate ten& ton Fig. 4. 17 - Simple tension

12
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Fig. 4. 18 - Biaxial compression Fig. 4. 19 - Hydrostatic compression

I-It

Fig. 4.20- Simple tension, hydro- Fig. 4. 21- Simple compression
static compression.
superimposed
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Fig. 4. ZZ- Mixed tension - compression Fig. 4. Z3- Torsion and stretch

combined
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APPENDIX I

Stress Analysis of a Thin Clamped Disk

In the course of analyzing failure characteristics of propellant specimens,

it was indicated that one could test under essentially hydrostatis: tension conditions

by cementing a thin disk, or poker chip, of the material between two rigid (steel)

supports and exerting tension in a direction perpendicular to the faces. Under such

loading, the center of the specimen would be subjected to a three-dimensional

tensile stress. The elementary analysis of the problem, assuming the disk radius

is infinite such that plane strain conditions hold, leads to the result that the radial

and circumferential stresses are equal and. for an isotropic homogeneous mediurms

with Poisson ratio, V, . proportional to the applied axial stress Oc.

a,. o'= a --'

It may be note,! that for an incompressible material not only is the stress state

triaxial, but it is also hydrostatic leading to there being no shear distortion in the
spt ,,.iraemr

Coupon tests have been employed by Gent and Lindley* in their experiments
upon rubber and by Ltehrer and Schwalzbart** in metals. The purpose of the
following analysis is to calculate the stres, distribut'an in a compressible thin

disk of finite radius.

Gent and Lindley were conccrnod wi:.i displacements and their analysis :I
employed whit was equivalent to a ,- irimum potential energy solution to predict

deformations and an apparent anodulus. However. for their approximation, a

variational procedure was. not used because the only free constant in their analysis,

the amplitude of the assumed parabolic deformation or bulge, was fixed by the

condition of incompressioility. W'hile their analysis could be extended by introducing

a higher ordpr deformation shape and a provision for compressil-ility, it does not

seem warranted at this time because our current interest is concerned with stresses.

"I 'internal Rupture of Bonded Rubber Cylinder in Tension" , Proceedings Royal
Society, A. Vol. 249, p. 195, 1959.

"* Static and Fatigue Strength of Metals Subjected to Traixial Stressed". Institute
of the Aeronautical Sciences. Paper No. 60-1, January 1960.
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Complementar t •iergy analisis. - Tht stress analysis will be carried out

using the winimum corplementary energy principle

for 3 disk of thicknesu Zh and

unit radius. The faces z - + hA

are assumed to be rigidly bonded A - --- a

to much stiffer supporting plates. /

We may therefore formulate the

problem. assuming circumferential symmetry, as reqzAring the satisfaction of the

field cquations of equilibrium

± o vO- + +! 3_=0 (3)
r _.r

and compatib-.q•ty

+ F + +,,-. , -46 o (5) 7--0

where O +oTO + C O,. The boundary conditions are on the faces

and on the unloaded circuinference

O'r( 1, Q, X%) "r., ( , Z9o) (10)

C.,



-279-

The elasticity solution to this problem is a formidabie one which is the

reason for using an energy approach. The theorem of minimum complermezary

energy requires* that a proposed stress state is admissible if

a) it satisfies the stress equations of equilibrium, and

b) the boundary conditions on that part of the boundary
where stresses are prescribed.

Inspection of (2)-(7), and (8)-(10) indicates by implication that the compatibility

equations may not necessarily be satisfied, nor may the displacement boundary

conditions (8) and (9). The theorem however guarantees that if there is some

arbitrariness in the proposed stress state, it may be adjusted by minimizing the

complementary energy

aVs j0ut ~' +- a{.~ +---t -mde (11)
Z 'I

-2 w a.rdr-Ae

to give the best possible averaged satisfaction of the compatibility and displacement

boundary conditions.

The heart of the problem lies in the initial choice of the admissible functions
which is accomplished mainly by intuition and experience. Without any rationalization

at this time, consider the following set which was chosen for reasonable simplicity

in the subsequent algebra rcquired.

S2[I A (Ir- ",) AC_ (14)

2W el, --nir"r
(13)

It will be found upon substitution into (2) and (3) that the equilibrium equations are

satisfied, whereas instertion of 1 z I into (12) and (15) satisfies (10). The function

set is therefore admissible. and furthermore contains a degree of arbitrariness

represented by the, at present, unknown constants 0o0 A. p, and n. These latter

constants will be determined by minimizing V*. e. g. BV*/80 = 0, etc.

* * See Sokolnikoff, Mathematical Theory of Elasticity, McGraw Hill. 1956.
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In passing it may be noted that the exponents n and p must exceed 0 and I

respectively in order that infinite stresses are not introduced at the origin. Also

the set has been chosen in such a way that at the origin r a s, 0.

.-- "O-, '=( )

to yield the desired limit as the disk thickness approaches zero, or. what is the

same. the radius of the disk becomes infinitely large. Finally o'. although

unknown, may be identified as the average tensile stress acting on the face to cause

the deformation wO.

For convenience, we define

2(16

and proceed to insert (l2)-(15) into (11) to obtain the complementary energy as a

function of the parameters. V* = V*(A. To. n. p). After the intergration and

algebraic reduction, there results

ýv*= (Soi +S,- 2 Vs 4 ')t, + Sjjt2 -2%Sjts -+ 2 (t.+v)S,&6 t
p_ (17T)

Where the following notation has been employed

S.2(r-')1,4 ('i-n+2)lyn4)' 7~-+P+3'1 + 6(P+31 ~2 (P+(19)S

(P- if
2P (20)

ncP-o(,n-tP-O7

(22)

11 (p-l)(23)

-z sinh 2..Mfi-2,4f4- 218ih,4 f' (2S)
2

37
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Th,.- minimizing condition OV'IaA - 0 leads to

[(+jz/ 4~~Sin-2IA~ 12(14L (26)nhA+24k-8isA-S

while 8V*I80" ' 0 in conjunction with (28) gives -

-"'[Snh 2.f,* .',q (29

(Ocan then be inserted into (28) to determine A w A( wo). With A and k" .nown

as junctions of (n, p, w 0o). they can be inserted into (17) to find •

Vt= V" (tP ; w.) (30)"
In pTinciple. therefore, one could add the additional minimizing conditions

wiV*ln e 0 and 8V*I•p a 0 and find finally nd p as functions of the applied ()i-
"formatioen and of course the thickness parameter h. Hence, all the constants

"A, "O n, and p are known in terms of w(p and h can be placed back into (17)-(o5)
to give the finall roximate stress distribution. mc

Sto give th ialapproximate srs itiuin

From the algebraic ctandpoint, however, it proves simpler to try various

" ;values of ni and p. in (30) and compute the corresponding value of V*. There will

be some pairs that wil give the algebraic minimutrn by this trial and error procedure

"%hich is equivalent to the minimization condition.

At this stage in the analysis, it is worth re-examining the necessity for find-

ing this stress distribution with due consideration to the computational work involved.

At least one solution is now available, but it may be worth investigating other function

sets to see if they may be computationally simpler. Furthermore, it is recommended

that any computations be first carried out for an incompressible medium. V at, S1=.0=.

If additional wyork on this solution or variations of it are thought warranted, it will

be reported at a later time. The only qualitative statement which can be made at

this time is that the true values of n, p - ii1 probably be fairly large corresponding

to a stress distribution fairly close to (1) over a large part of the central portion of

the disk. One major limitation of the technique is that both n and p will depend upon

the width/thickness ratio of the sample, so that a parameter study of the latter

ratio would entail an iteration of the computation of n and p.

* -.. .... ... .* -



APPENDDr 11

Crack Propagation in Viscoelastic Media

Zn the body of the report, the stress distribution near a small crack in a
large thin sheet subjected to a uniform tensile stress was discussed. Further. ft

was pointed out that the viscoelastic and elastic stress distributions are the same

for this loading. thus leading to the possibility of computing the viscoelastic strains

and displacements from the basic elastic information. The purpose of the following

analysis is to use this information to predict crack propagation characteristics in a

iiscoelastic medium.

From the basic solution* the biaxial stress distribution in the plate strip

subjected to a tension to a is

tttttI .
S-x~b (1-a)

= o'.~~~ - •+ - ; = b+r {l(1-b.

x +

-~-+ _ b)t•t

where it is clear that the stress becomes infinite as the point of the crack is ap-

proached. In order to circumvent the necessity for conducting a large strain, elasto-

plastic solution, it will arbitrarily be assumed !hat the stress may build up to a

specified value at a distance t from the crack tip and remain coas.ant throughout the

interval 0 f x-b 4 until an ultimate one-dimensional strain 60 is reached.

SD. D. Ang and M. L. Williams: Combined Stresses in an Orthotropic Plate
Having a Finite Crack. GALCIT SM 60-1. California Institute of Technology.
January 1960 (rev. September 1960).

SI
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* ~ it should be observed that the elastic

solution is no longer correct, because

the specimen, by the equations of

equilibrium, is presumed to be

absorbing the stress ini•.-ated by the

I _dashed line. Thus the load represented
--- I t J-. s=b~e by integrating the stress between x ab

and x ab +& is not accounted for when

the truncation is made. Therefore the

actual stress distribution would be more like the dotted line, with the additional

area accomplishirg the necessary force balance. On the other hand. b.cause

this (dotted) distribution cannot easily

A.. ebe calculated, and because it is desirable

to still have the force balance. the analysis

wil. be carrie-d out using the modified

truncated stress distribution shown in

Figure c on which areas Al and Az are

CISACC• equal. If the existence of such quantities

I--- b -- 4 & I-- as C* and I can be established by

FIGURN C experiment, then the following analysis

could lead to useful results.

Visualize then, the conditions along the line of crack prolongation, and

assume that the internal forces along the shear free line are carried, for simplicity,

by a series of discrete Voigt elements

averaged over the characteristic length

Tle mechanism postulated is that each

element will strain as a result of stresses

Satd or ) which are constant over the

Sb length assigned to each element as shown

in Figure d. The -alue; of these stresses
are determined from equations (1) and (Z)

and the equilibrium condition discussed

0 1 t earlier. Namely we assume that for a

crack width Zb, the stresses acting on

element (n) are the average values-

--- ------ --------- ------
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Zr . .I¶ ~ [T~+rl~7i1 +(3-a)
2 :

.4. J,.• I - IU,,I~t r i.

-VL

After the strain in the first element reaches, C I, it will break and the stress

distribution will shift by one 6 width; i.e. the stress which had been acting on the

elemenlt n is now acting on element n + 1, where the effective crack length to be

used is 2 (b + &). Alter m translations, or altar element (in - 1) breaks, one has

o 23,

ffi o'_• t-

To reiterate, o•is the average stress acting on elem.ent ent before element Cm) " --

breakst but alter element (rn-e ) has parted. Thus, the stress at the crack tip is

given approximately by

It is clear that if & is assumed to be a fixed characteristic dimension, the stresS
acting on the element at the crack tip is not limited, but increases with crack length. to b

However, in the initial stages of crack groth (m6 <cmb) the stress is practically

constant as seen from equation (4-b). ;
T Since we now have the t.odimensional stresses as a function of crack position.

the time dependent strain in each element can be found from the plane stress, stress-

strain equation. For an elastic material, we have

+(4)

It~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ iscerta f i sue ob iedcaatrsi ies/tesrs
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For simplicity, we will assume an incompressible mediun (V =2t). The visco-

elastic strain im obtained in the usual manner by replacing E by its equivalent

differential operator, which fn7 a Voigt model is*

where

E a modulus of the spring in parallel with a dashpot
with viscosity il

"-C a /Ev a retardation time of model

Insertion of (6) into (5) yields the viscoelastic stress-strain equation which applies

to each element J-

In terms of the notation used in equation (4). equation (7) becomes

" Or.* (8)

where 4,ýis the strain in eleinent (n) before element (m) breaks, but after element

(rn-i) has parted. If we denote the time at which element (m)b:eaks by tm then

equation (8) applies to the time interval tin. 1 t 4 tm. In this time interval the

right hand side of (8) is constant so that we can integrate it for the strain:

where e,, is defined as the strain existing in element (n) at the time element (m-1)

breaks, which is t . If we set t a t in equation (9), the initial condition

is satisfied. Letting t - co, we have

E "cvir G ±. M___jhn+ik-O-m1 J

* See the comments in the text regarding the use of an approximate compliance
representation ( 4. 4. 33 ) for greater generality, but with increased algebraic
complexity.

___________________,. . . . . . . .
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which is the long-time or equilibrium strain that would result if element (zn ,"id

not brepiL. It is seen from equation (10) that this is a known value if the crack

position is given. Therefore as a matter of convenience we shall write (9) as

r . +1 ." e (f-a)

and the strain at the time when element (re)breaks

(I 11-b)

This expression can now be used to calculate the time at which each element breaks
and hence will give the crack velocity us a function of time.

Consider first the strain in element zero for 0 K t • to, so that n a m a 0 and
st.' .) t € . _-,,e

in which we must define t. 1 0a •, l)b a 0 to satisfy the initial condition that the

material is unstrained at t a 0. Hence,
,e;" e+• [ - e-j

Element (0) break& t t at when F-0O) (to)m.0 )b -*.

C'',s•. ' e.• I - e

Solving for to.

which is the time that elapses before the crack starts to run. From equation (10)

Z- 0

ass um ing O,-

assuming [-•' •I

%.r2
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Equation (11) gives the strain in the rext element at t a as

In order to find tle (0)b must be determined from (11-b) and (12)

Inserting t.'; expression in (IS) and solving for t1

It is observed "-,at all of the strains appearing. -re equilibrium values -.nd are thus

kno'in from equation (10). By assuming that the strain E* at which the element

breaks is much smaller than the equilibrium strain F0) , or equivalently that thele oreuvenythtte

retp rdation tirr i T is muzh larger than the time interval t .- to, equation (16)

km.-nifies to

Us. :"; . nd assuming c4 1.l, it is found that

+ e 1'2-r 6b (2 - 4M (17)

The initial velocity of crack propagation is given by

and fr•om (17) is approximately

y - "1 ( ,Or.-a ( 1 8 )

As a rough means of estimating j * consider McCullough's preliminary data* shown

in the figure in the region of constant stress, from which V= Z x 103 in/sec.

o ZO a 20 psi. b x 0. 2 inches. Using typical room temperature propert.ies gives

S10 inches, which does not seem to bc an unreasonable magnitude and may be

thought of as a characteristic strand diameter. Note. as hypothesized &,b. !.

* J. McCullough: Studies on Velocity of Crack Propagation. !.nternal Report to

Chemistry Department, Thiokol Chemical Corporation, Redstone Division, Huntsville.
* Alabama. September 1959.
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Calculation of crack tip velocity as a function of tip location. .

With these results appearing rea•ronable, it is appropriate to extend the

analysis and obtain an expreaison for crack tip velocity as a function of crack

growth. To do this, the expression (11-b) for e 1m)b must first be expanded so

that all of the strains which appear on the right hand side are the known equilibrium

values. It is seen from (Vl-b) that E n must be replaced by a function of

equilibrium strains. If we write

(-Ib(rn-Z)b -it is seen that En~ml)b is in terms of equilibrium strains and -
Continuing this process until the only non-equilibrium strain in the expression for

n(m- 3b is wn"lb 0 , we obtain the desired expression for __6.

Substitution of this result into (11 -b) leads to the representation
AM %

where, as before, we have defined e•=t.,.o. Noting that cc (mT is the strain

in element (m) just when element (m) breaks, and is therefore r=*.

CR~ tw 'LillT~ (Z0)

Since all of the strains in this equation are known, as given by (10). equation (20)

can bc used to solve explicitly for crack tip velocity

in which V is the velocity when the tip is at element (m). It will be convenient to

rewrite (20) in the following form

"6•., ~ ~ ~ f' 012 21 ...je' -*• :]

where we have defined

To illustrate the significance of (21). it is expanded for m a 0. 1. 2:

-=t
:•- "/ .- . .- :.• .-.•:-:. .-.- . . . :-: : . . . . . : . . . . . . . . .
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ejas+s +elo 1-4e3P (22-b)

~wt~a: ' El- e*3eI I'+~' e, re~ * [I :Sol (22-c)

It is clear that if (Ma-t.)-ocZ x the exponential terms which multiply ot can be

taken as unity so that (21) becomes

Cr (23)

Utilizing (22-a) for cc* we czn rewrite (23) as

e~j) W.(24)

- - where it was convenient to define

if it is further assurned that only the first term in the equilibriumn strain (10) need

be considered (i.e. that the strain resulting from the leading term in the stresses

(1-b) and (2-b) provides the main contribution to failure) then from (10)

NEatfw0 
(25-b)

Sr'bstituting (25) into (24) gives the recurrence expression for -W-:

Calculatior~s gives for examnple

- .1, 22 , . w ...-In..0,a , ... ..... .. . .

we.

it can be deduced that

W. w erit (23(7

wher it as cnveientto dfin

Si t i s f u rt.. . . . . . . . . . . . . . . . . .. . . . . . . . .. .t ht. .y.h.. . . .t r.. .t e. .u.i 
r u m s t a i 1 0 n e
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SUnder the assumption that --•-c1 a

so that

Solving for V and using (27) we find

T o.0a, 6 Im,.I M+(

showing that the velocity increases -ithout boundas the crack grows which is

impossible because free running cracks are known to be limited by speeds of the

order of half the shear wave speed. However such a result is not surprising since

"* inertia has not been included in the formulation. Nevertheless, (29) -may provide a

reasonable approximation to the crack tip speed if it is sufficiently less than the

shear wave speed.

Passing to the continuous form by letting m S z s., in which s is the distance

the crack tip has traveled, we have

which shows

6O (30-b)

..v b•..l (30-c)

The initial behavior indicated in (30-b) results from the increasing amount of strain

which acctunulates in the elements ah .ad of the crack as it propagates. This

increase i1. velocity when sa -b occurs while the stress at the crack tip remains

essentially constant as seen from equation (4-b). However, tie fact that the stress

is proportional to I-sfor s >-, I accounts for the more rapid increase in velocity

shown by (30-c)

• .7
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The time dependence of crack growth can be determined from (30-a) by

integration;

so tb•Lt

2ýas 41 , (£ b

S (31-c)

Remarks.

The proposed phenomenological model is by no means unique. with it being

possible to include a more complicated material representation instead of the

incompressible Voigt model used here. Also it should be possible to introduce sain
more sophisticated fracture criterion if necessary. based not upon m~aximum strain,

but perhaps octahedral strain as a function of strain rate and cumulative damage.

Further. for ease in manipulation, the discrete element (ormulation might he

replaced by a continuous material formulation. Finally. a basic investigation
might be conducted to ascertain the physica3 significance of the characteristic

strand Jiameter. 6 incorporated in the analysis.

4
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APFENDDX II

Large Plane Strain Analysis for Distortion Energy in a Hollow Tube

The strain transformnation in cylindrical coordinates is given by

Here the superscript bar indicates the deforrnci or Zaierian coondinata. The

Jacobian of the tranpforma-•ion iw givenl ,

Incompressibility demands that

a,-r

Substitt-ion into (Z) yields

31C (6)

The equilibrium equation is cast in Euleriar. coordirutes

* 2-
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Substituting (6) and (7) yields after integration

2 X -(9)

c Na~1  (10)

At the inner surface, radius a

)A1

At the propellant-case interface, the radial stress (rub) is taken to be -Pe

- ,=, c _ ,, (13)

1+ (14)

where again

•- I + (16) .-
bXb

The strain energy is easily seen to be a maximum at a* so that

2a -2)(

The interfacial pressure is determined by matching %ith the case. We have.

using a prime to indicate properties L-z the r.etal

o-•= A- i}.

A 0i9)

r 2A4'AF:,

L-" /-'IL



At rub, we hawv

SA- (ZO)

UN=- 12 +

Note that we equate (u/r)b to the finite (Murnaghan strain) to be consistent with
large strain theory. even though we use small strain theory in the case. At the

outer surface of the case, the pressure is assumed to be zero, so that

B = Aca (ZZ

Solution is expedited by defining, asn before

+ 2- +1')(23)

so that

$A (24)

Substitution into (6) yields

and with (14). there results

2P_
AAZ 1m~-) ? (26)

Since k will be approximately 4 near the yield, (6) is easily approximated by

"" us_-ng m a a/b (27)

and the strain energy becomes

This expression is to be compared with (4. 5. 48) for ') 4

.w,,mw= 2M (29)

for small +. Thus, in small strain theory, the energy increases quadratically with

pressure, whereas the dependence becomes linear in the large strain theory. i.e.

2 m (30)

vIa

2 , .'


